Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation Article Swipe
Shuai Zhao
,
Xiaobao Wu
,
Cong-Duy Nguyen
,
Yanhao Jia
,
Meihuizi Jia
,
Feng Yichao
,
Anh Tuan Luu
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2025.findings-acl.255
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.18653/v1/2025.findings-acl.255
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/2025.findings-acl.255
- https://aclanthology.org/2025.findings-acl.255.pdf
- OA Status
- gold
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412888737
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412888737Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/2025.findings-acl.255Digital Object Identifier
- Title
-
Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge DistillationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Shuai Zhao, Xiaobao Wu, Cong-Duy Nguyen, Yanhao Jia, Meihuizi Jia, Feng Yichao, Anh Tuan LuuList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/2025.findings-acl.255Publisher landing page
- PDF URL
-
https://aclanthology.org/2025.findings-acl.255.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://aclanthology.org/2025.findings-acl.255.pdfDirect OA link when available
- Concepts
-
Backdoor, Distillation, Computer science, Computer security, Business, Chemistry, Organic chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412888737 |
|---|---|
| doi | https://doi.org/10.18653/v1/2025.findings-acl.255 |
| ids.doi | https://doi.org/10.18653/v1/2025.findings-acl.255 |
| ids.openalex | https://openalex.org/W4412888737 |
| fwci | 9.63949029 |
| type | article |
| title | Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 4952 |
| biblio.first_page | 4937 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.98089998960495 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T10237 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9272000193595886 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781045450 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9725158214569092 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254569 |
| concepts[0].display_name | Backdoor |
| concepts[1].id | https://openalex.org/C204030448 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5106959939002991 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[1].display_name | Distillation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.46429452300071716 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4595346450805664 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| concepts[4].id | https://openalex.org/C144133560 |
| concepts[4].level | 0 |
| concepts[4].score | 0.35975944995880127 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[4].display_name | Business |
| concepts[5].id | https://openalex.org/C185592680 |
| concepts[5].level | 0 |
| concepts[5].score | 0.1722402274608612 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[5].display_name | Chemistry |
| concepts[6].id | https://openalex.org/C178790620 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[6].display_name | Organic chemistry |
| keywords[0].id | https://openalex.org/keywords/backdoor |
| keywords[0].score | 0.9725158214569092 |
| keywords[0].display_name | Backdoor |
| keywords[1].id | https://openalex.org/keywords/distillation |
| keywords[1].score | 0.5106959939002991 |
| keywords[1].display_name | Distillation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.46429452300071716 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.4595346450805664 |
| keywords[3].display_name | Computer security |
| keywords[4].id | https://openalex.org/keywords/business |
| keywords[4].score | 0.35975944995880127 |
| keywords[4].display_name | Business |
| keywords[5].id | https://openalex.org/keywords/chemistry |
| keywords[5].score | 0.1722402274608612 |
| keywords[5].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.18653/v1/2025.findings-acl.255 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://aclanthology.org/2025.findings-acl.255.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Findings of the Association for Computational Linguistics: ACL 2025 |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/2025.findings-acl.255 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034822677 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5174-5182 |
| authorships[0].author.display_name | Shuai Zhao |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shuai Zhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5011376608 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0076-3924 |
| authorships[1].author.display_name | Xiaobao Wu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiaobao Wu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5025645183 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0931-460X |
| authorships[2].author.display_name | Cong-Duy Nguyen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Cong-Duy T Nguyen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5119181472 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Yanhao Jia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yanhao Jia |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5024179471 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-5624-9980 |
| authorships[4].author.display_name | Meihuizi Jia |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meihuizi Jia |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5116038830 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Feng Yichao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Feng Yichao |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5050386762 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1927-9895 |
| authorships[6].author.display_name | Anh Tuan Luu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Anh Tuan Luu |
| authorships[6].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://aclanthology.org/2025.findings-acl.255.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unlearning Backdoor Attacks for LLMs with Weak-to-Strong Knowledge Distillation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.98089998960495 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4320031223, https://openalex.org/W4200629851, https://openalex.org/W4281902577, https://openalex.org/W4309417370, https://openalex.org/W4292107232, https://openalex.org/W3009072493, https://openalex.org/W4401407399 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/2025.findings-acl.255 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://aclanthology.org/2025.findings-acl.255.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2025 |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/2025.findings-acl.255 |
| primary_location.id | doi:10.18653/v1/2025.findings-acl.255 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://aclanthology.org/2025.findings-acl.255.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Findings of the Association for Computational Linguistics: ACL 2025 |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/2025.findings-acl.255 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.97805179 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |