Unmasking deceptive profiles: A deep dive into fake account detection on instagram and twitter Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1051/bioconf/20249700127
The rise of online social networks, also known as OSNs, has captured the attention of younger generations and made them an integral part of social life. As a result, the use of various social media platforms has increased significantly, greatly impacting individuals' social connections. These platforms offer a wide range of features, such as news distribution, contributing to their widespread use. However, with the rapid growth of social media, the prevalence of fake accounts has become a major problem, posing a threat to both the security of users and the integrity of these platforms. In response, this article explores the effectiveness of machine learning algorithms (ML). Detect and identify fraudulent accounts on popular social media platforms, especially Instagram and Twitter. Our methodology involves analyzing user activity and account information to develop fine-tuned machine-learning models. Our approach takes into account important parameters such as number of followers, number of posts, and engagement.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1051/bioconf/20249700127
- OA Status
- diamond
- Cited By
- 2
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393982673
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393982673Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/bioconf/20249700127Digital Object Identifier
- Title
-
Unmasking deceptive profiles: A deep dive into fake account detection on instagram and twitterWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Ahmed Dheyaa Radhi, Huda Noman Obeid, Bourair Al-Attar, Al-Ibraheemi Fuqdan, Baqer A Hakim, Hussein Ali Hussein Al NaffakhList of authors in order
- Landing page
-
https://doi.org/10.1051/bioconf/20249700127Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1051/bioconf/20249700127Direct OA link when available
- Concepts
-
Internet privacy, Social media, Fake news, Computer science, Psychology, Computer security, Data science, Advertising, Business, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393982673 |
|---|---|
| doi | https://doi.org/10.1051/bioconf/20249700127 |
| ids.doi | https://doi.org/10.1051/bioconf/20249700127 |
| ids.openalex | https://openalex.org/W4393982673 |
| fwci | 1.42500853 |
| type | article |
| title | Unmasking deceptive profiles: A deep dive into fake account detection on instagram and twitter |
| biblio.issue | |
| biblio.volume | 97 |
| biblio.last_page | 00127 |
| biblio.first_page | 00127 |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T12268 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3207 |
| topics[2].subfield.display_name | Social Psychology |
| topics[2].display_name | Deception detection and forensic psychology |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108827166 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5905380249023438 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[0].display_name | Internet privacy |
| concepts[1].id | https://openalex.org/C518677369 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5701595544815063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[1].display_name | Social media |
| concepts[2].id | https://openalex.org/C2779756789 |
| concepts[2].level | 2 |
| concepts[2].score | 0.48927780985832214 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q28549308 |
| concepts[2].display_name | Fake news |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.35958266258239746 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3373585343360901 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C38652104 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3349628448486328 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[5].display_name | Computer security |
| concepts[6].id | https://openalex.org/C2522767166 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3332291841506958 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[6].display_name | Data science |
| concepts[7].id | https://openalex.org/C112698675 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33318236470222473 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37038 |
| concepts[7].display_name | Advertising |
| concepts[8].id | https://openalex.org/C144133560 |
| concepts[8].level | 0 |
| concepts[8].score | 0.2635079622268677 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[8].display_name | Business |
| concepts[9].id | https://openalex.org/C136764020 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2085016965866089 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[9].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/internet-privacy |
| keywords[0].score | 0.5905380249023438 |
| keywords[0].display_name | Internet privacy |
| keywords[1].id | https://openalex.org/keywords/social-media |
| keywords[1].score | 0.5701595544815063 |
| keywords[1].display_name | Social media |
| keywords[2].id | https://openalex.org/keywords/fake-news |
| keywords[2].score | 0.48927780985832214 |
| keywords[2].display_name | Fake news |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.35958266258239746 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.3373585343360901 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/computer-security |
| keywords[5].score | 0.3349628448486328 |
| keywords[5].display_name | Computer security |
| keywords[6].id | https://openalex.org/keywords/data-science |
| keywords[6].score | 0.3332291841506958 |
| keywords[6].display_name | Data science |
| keywords[7].id | https://openalex.org/keywords/advertising |
| keywords[7].score | 0.33318236470222473 |
| keywords[7].display_name | Advertising |
| keywords[8].id | https://openalex.org/keywords/business |
| keywords[8].score | 0.2635079622268677 |
| keywords[8].display_name | Business |
| keywords[9].id | https://openalex.org/keywords/world-wide-web |
| keywords[9].score | 0.2085016965866089 |
| keywords[9].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.1051/bioconf/20249700127 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210168758 |
| locations[0].source.issn | 2117-4458, 2273-1709 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2117-4458 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | BIO Web of Conferences |
| locations[0].source.host_organization | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_name | EDP Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319748 |
| locations[0].source.host_organization_lineage_names | EDP Sciences |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | BIO Web of Conferences |
| locations[0].landing_page_url | https://doi.org/10.1051/bioconf/20249700127 |
| locations[1].id | pmh:oai:doaj.org/article:f452e4051fb349b49ef48d18296a14d4 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | BIO Web of Conferences, Vol 97, p 00127 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f452e4051fb349b49ef48d18296a14d4 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5072192955 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7194-8972 |
| authorships[0].author.display_name | Ahmed Dheyaa Radhi |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ahmed Dheyaa Radhi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104271377 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Huda Noman Obeid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huda Noman Obeid |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5109729476 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bourair Al-Attar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Bourair Al-Attar |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5095087760 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Al-Ibraheemi Fuqdan |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | AL-Ibraheemi Fuqdan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5008245605 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Baqer A Hakim |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Baqer A Hakim |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5091567012 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-4775-8818 |
| authorships[5].author.display_name | Hussein Ali Hussein Al Naffakh |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hussein Ali Hussein Al Naffakh |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1051/bioconf/20249700127 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-04-06T00:00:00 |
| display_name | Unmasking deceptive profiles: A deep dive into fake account detection on instagram and twitter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2890339288, https://openalex.org/W2966672946, https://openalex.org/W3137554057, https://openalex.org/W3205414356, https://openalex.org/W3015693164, https://openalex.org/W2942388309, https://openalex.org/W2996237090, https://openalex.org/W3137972732, https://openalex.org/W3166592327 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1051/bioconf/20249700127 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210168758 |
| best_oa_location.source.issn | 2117-4458, 2273-1709 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2117-4458 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | BIO Web of Conferences |
| best_oa_location.source.host_organization | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_name | EDP Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| best_oa_location.source.host_organization_lineage_names | EDP Sciences |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | BIO Web of Conferences |
| best_oa_location.landing_page_url | https://doi.org/10.1051/bioconf/20249700127 |
| primary_location.id | doi:10.1051/bioconf/20249700127 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210168758 |
| primary_location.source.issn | 2117-4458, 2273-1709 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2117-4458 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | BIO Web of Conferences |
| primary_location.source.host_organization | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_name | EDP Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319748 |
| primary_location.source.host_organization_lineage_names | EDP Sciences |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | BIO Web of Conferences |
| primary_location.landing_page_url | https://doi.org/10.1051/bioconf/20249700127 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2114453181, https://openalex.org/W6637998964, https://openalex.org/W2218242280, https://openalex.org/W3172540971, https://openalex.org/W4393406053, https://openalex.org/W396027602, https://openalex.org/W4242735564 |
| referenced_works_count | 7 |
| abstract_inverted_index.a | 27, 47, 76, 80 |
| abstract_inverted_index.As | 26 |
| abstract_inverted_index.In | 94 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.as | 8, 53, 142 |
| abstract_inverted_index.of | 2, 14, 23, 31, 50, 66, 71, 86, 91, 101, 144, 147 |
| abstract_inverted_index.on | 111 |
| abstract_inverted_index.to | 57, 82, 129 |
| abstract_inverted_index.Our | 120, 134 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 17, 88, 107, 118, 126, 149 |
| abstract_inverted_index.has | 10, 36, 74 |
| abstract_inverted_index.the | 12, 29, 63, 69, 84, 89, 99 |
| abstract_inverted_index.use | 30 |
| abstract_inverted_index.also | 6 |
| abstract_inverted_index.both | 83 |
| abstract_inverted_index.fake | 72 |
| abstract_inverted_index.into | 137 |
| abstract_inverted_index.made | 18 |
| abstract_inverted_index.news | 54 |
| abstract_inverted_index.part | 22 |
| abstract_inverted_index.rise | 1 |
| abstract_inverted_index.such | 52, 141 |
| abstract_inverted_index.them | 19 |
| abstract_inverted_index.this | 96 |
| abstract_inverted_index.use. | 60 |
| abstract_inverted_index.user | 124 |
| abstract_inverted_index.wide | 48 |
| abstract_inverted_index.with | 62 |
| abstract_inverted_index.(ML). | 105 |
| abstract_inverted_index.OSNs, | 9 |
| abstract_inverted_index.These | 44 |
| abstract_inverted_index.known | 7 |
| abstract_inverted_index.life. | 25 |
| abstract_inverted_index.major | 77 |
| abstract_inverted_index.media | 34, 114 |
| abstract_inverted_index.offer | 46 |
| abstract_inverted_index.range | 49 |
| abstract_inverted_index.rapid | 64 |
| abstract_inverted_index.takes | 136 |
| abstract_inverted_index.their | 58 |
| abstract_inverted_index.these | 92 |
| abstract_inverted_index.users | 87 |
| abstract_inverted_index.Detect | 106 |
| abstract_inverted_index.become | 75 |
| abstract_inverted_index.growth | 65 |
| abstract_inverted_index.media, | 68 |
| abstract_inverted_index.number | 143, 146 |
| abstract_inverted_index.online | 3 |
| abstract_inverted_index.posing | 79 |
| abstract_inverted_index.posts, | 148 |
| abstract_inverted_index.social | 4, 24, 33, 42, 67, 113 |
| abstract_inverted_index.threat | 81 |
| abstract_inverted_index.account | 127, 138 |
| abstract_inverted_index.article | 97 |
| abstract_inverted_index.develop | 130 |
| abstract_inverted_index.greatly | 39 |
| abstract_inverted_index.machine | 102 |
| abstract_inverted_index.models. | 133 |
| abstract_inverted_index.popular | 112 |
| abstract_inverted_index.result, | 28 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.younger | 15 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.Twitter. | 119 |
| abstract_inverted_index.accounts | 73, 110 |
| abstract_inverted_index.activity | 125 |
| abstract_inverted_index.approach | 135 |
| abstract_inverted_index.captured | 11 |
| abstract_inverted_index.explores | 98 |
| abstract_inverted_index.identify | 108 |
| abstract_inverted_index.integral | 21 |
| abstract_inverted_index.involves | 122 |
| abstract_inverted_index.learning | 103 |
| abstract_inverted_index.problem, | 78 |
| abstract_inverted_index.security | 85 |
| abstract_inverted_index.Instagram | 117 |
| abstract_inverted_index.analyzing | 123 |
| abstract_inverted_index.attention | 13 |
| abstract_inverted_index.features, | 51 |
| abstract_inverted_index.impacting | 40 |
| abstract_inverted_index.important | 139 |
| abstract_inverted_index.increased | 37 |
| abstract_inverted_index.integrity | 90 |
| abstract_inverted_index.networks, | 5 |
| abstract_inverted_index.platforms | 35, 45 |
| abstract_inverted_index.response, | 95 |
| abstract_inverted_index.algorithms | 104 |
| abstract_inverted_index.especially | 116 |
| abstract_inverted_index.fine-tuned | 131 |
| abstract_inverted_index.followers, | 145 |
| abstract_inverted_index.fraudulent | 109 |
| abstract_inverted_index.parameters | 140 |
| abstract_inverted_index.platforms, | 115 |
| abstract_inverted_index.platforms. | 93 |
| abstract_inverted_index.prevalence | 70 |
| abstract_inverted_index.widespread | 59 |
| abstract_inverted_index.engagement. | 150 |
| abstract_inverted_index.generations | 16 |
| abstract_inverted_index.information | 128 |
| abstract_inverted_index.methodology | 121 |
| abstract_inverted_index.connections. | 43 |
| abstract_inverted_index.contributing | 56 |
| abstract_inverted_index.individuals' | 41 |
| abstract_inverted_index.distribution, | 55 |
| abstract_inverted_index.effectiveness | 100 |
| abstract_inverted_index.significantly, | 38 |
| abstract_inverted_index.machine-learning | 132 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.72033516 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |