Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2004.02126
The goal of this paper is to provide a method, which is able to find categories of traffic scenarios automatically. The architecture consists of three main components: A microscopic traffic simulation, a clustering technique and a classification technique for the operational phase. The developed simulation tool models each vehicle separately, while maintaining the dependencies between each other. The clustering approach consists of a modified unsupervised Random Forest algorithm to find a data adaptive similarity measure between all scenarios. As part of this, the path proximity, a novel technique to determine a similarity based on the Random Forest algorithm is presented. In the second part of the clustering, the similarities are used to define a set of clusters. In the third part, a Random Forest classifier is trained using the defined clusters for the operational phase. A thresholding technique is described to ensure a certain confidence level for the class assignment. The method is applied for highway scenarios. The results show that the proposed method is an excellent approach to automatically categorize traffic scenarios, which is particularly relevant for testing autonomous vehicle functionality.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.2004.02126
- OA Status
- green
- Cited By
- 1
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2983248310
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2983248310Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2004.02126Digital Object Identifier
- Title
-
Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-04-05Full publication date if available
- Authors
-
Friedrich Kruber, Jonas Wurst, Eduardo Sánchez Morales, Samarjit Chakraborty, Michael BotschList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2004.02126Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2004.02126Direct OA link when available
- Concepts
-
Cluster analysis, Random forest, Computer science, Data mining, Artificial intelligence, Thresholding, Classifier (UML), Machine learning, Categorization, Unsupervised learning, Set (abstract data type), Pattern recognition (psychology), Programming language, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2983248310 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2004.02126 |
| ids.doi | https://doi.org/10.48550/arxiv.2004.02126 |
| ids.mag | 2983248310 |
| ids.openalex | https://openalex.org/W2983248310 |
| fwci | 0.13826447 |
| type | article |
| title | Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2470 |
| biblio.first_page | 2463 |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| topics[1].id | https://openalex.org/T10524 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9685999751091003 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Traffic control and management |
| topics[2].id | https://openalex.org/T11099 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9674000144004822 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Autonomous Vehicle Technology and Safety |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C73555534 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7913146018981934 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[0].display_name | Cluster analysis |
| concepts[1].id | https://openalex.org/C169258074 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7545216679573059 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[1].display_name | Random forest |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6787974834442139 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5302649736404419 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5277424454689026 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C191178318 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5211008787155151 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2256906 |
| concepts[5].display_name | Thresholding |
| concepts[6].id | https://openalex.org/C95623464 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5157342553138733 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[6].display_name | Classifier (UML) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.46603578329086304 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C94124525 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4487428367137909 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q912550 |
| concepts[8].display_name | Categorization |
| concepts[9].id | https://openalex.org/C8038995 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44453227519989014 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[9].display_name | Unsupervised learning |
| concepts[10].id | https://openalex.org/C177264268 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4335654675960541 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[10].display_name | Set (abstract data type) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.34853318333625793 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C199360897 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[12].display_name | Programming language |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/cluster-analysis |
| keywords[0].score | 0.7913146018981934 |
| keywords[0].display_name | Cluster analysis |
| keywords[1].id | https://openalex.org/keywords/random-forest |
| keywords[1].score | 0.7545216679573059 |
| keywords[1].display_name | Random forest |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6787974834442139 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.5302649736404419 |
| keywords[3].display_name | Data mining |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5277424454689026 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/thresholding |
| keywords[5].score | 0.5211008787155151 |
| keywords[5].display_name | Thresholding |
| keywords[6].id | https://openalex.org/keywords/classifier |
| keywords[6].score | 0.5157342553138733 |
| keywords[6].display_name | Classifier (UML) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.46603578329086304 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/categorization |
| keywords[8].score | 0.4487428367137909 |
| keywords[8].display_name | Categorization |
| keywords[9].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[9].score | 0.44453227519989014 |
| keywords[9].display_name | Unsupervised learning |
| keywords[10].id | https://openalex.org/keywords/set |
| keywords[10].score | 0.4335654675960541 |
| keywords[10].display_name | Set (abstract data type) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.34853318333625793 |
| keywords[11].display_name | Pattern recognition (psychology) |
| language | en |
| locations[0].id | doi:10.48550/arxiv.2004.02126 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article-journal |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2004.02126 |
| locations[1].id | mag:2983248310 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4363604372 |
| locations[1].source.issn | |
| locations[1].source.type | journal |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | IV |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | IV |
| locations[1].landing_page_url | https://dblp.uni-trier.de/db/conf/ivs/ivs2019.html#KruberWMCB19 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5027876649 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Friedrich Kruber |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210106192 |
| authorships[0].affiliations[0].raw_affiliation_string | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I4210106192 |
| authorships[0].institutions[0].ror | https://ror.org/02bxzcy64 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210106192 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Technische Hochschule Ingolstadt |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Friedrich Kruber |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[1].author.id | https://openalex.org/A5080688098 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0399-3672 |
| authorships[1].author.display_name | Jonas Wurst |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210106192 |
| authorships[1].affiliations[0].raw_affiliation_string | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I4210106192 |
| authorships[1].institutions[0].ror | https://ror.org/02bxzcy64 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210106192 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technische Hochschule Ingolstadt |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jonas Wurst |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[2].author.id | https://openalex.org/A5056408651 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8622-0757 |
| authorships[2].author.display_name | Eduardo Sánchez Morales |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210106192 |
| authorships[2].affiliations[0].raw_affiliation_string | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I4210106192 |
| authorships[2].institutions[0].ror | https://ror.org/02bxzcy64 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210106192 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technische Hochschule Ingolstadt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Eduardo Sánchez Morales |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[3].author.id | https://openalex.org/A5100737286 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0503-6235 |
| authorships[3].author.display_name | Samarjit Chakraborty |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[3].affiliations[0].raw_affiliation_string | Real-Time Computer Systems, Technical University of Munich, Arcis-straße 21, Munich, 80333, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I62916508 |
| authorships[3].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | Technical University of Munich |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Samarjit Chakraborty |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Real-Time Computer Systems, Technical University of Munich, Arcis-straße 21, Munich, 80333, Germany |
| authorships[4].author.id | https://openalex.org/A5058811339 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0900-1697 |
| authorships[4].author.display_name | Michael Botsch |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210106192 |
| authorships[4].affiliations[0].raw_affiliation_string | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I4210106192 |
| authorships[4].institutions[0].ror | https://ror.org/02bxzcy64 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210106192 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | Technische Hochschule Ingolstadt |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Michael Botsch |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Technische Hochschule Ingolstadt, Research Center CARISSMA, Esplanade 10, Ingolstadt, 85049, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2004.02126 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised and Supervised Learning with the Random Forest Algorithm for Traffic Scenario Clustering and Classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W3099998889, https://openalex.org/W2057114683, https://openalex.org/W1715189447, https://openalex.org/W2185940157, https://openalex.org/W3130912606, https://openalex.org/W2106080381, https://openalex.org/W1155226713, https://openalex.org/W2077066055, https://openalex.org/W3039373883, https://openalex.org/W2098515641, https://openalex.org/W1966669594, https://openalex.org/W2754014686, https://openalex.org/W2886841515, https://openalex.org/W2127141058, https://openalex.org/W1566601732, https://openalex.org/W2184364778, https://openalex.org/W2011796813, https://openalex.org/W2810642340, https://openalex.org/W2261774132, https://openalex.org/W2006486857 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.48550/arxiv.2004.02126 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article-journal |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2004.02126 |
| primary_location.id | doi:10.48550/arxiv.2004.02126 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article-journal |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2004.02126 |
| publication_date | 2020-04-05 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 27, 135 |
| abstract_inverted_index.a | 8, 31, 35, 62, 70, 85, 90, 113, 121, 142 |
| abstract_inverted_index.As | 78 |
| abstract_inverted_index.In | 100, 117 |
| abstract_inverted_index.an | 165 |
| abstract_inverted_index.is | 5, 11, 98, 125, 138, 152, 164, 174 |
| abstract_inverted_index.of | 2, 16, 23, 61, 80, 104, 115 |
| abstract_inverted_index.on | 93 |
| abstract_inverted_index.to | 6, 13, 68, 88, 111, 140, 168 |
| abstract_inverted_index.The | 0, 20, 42, 57, 150, 157 |
| abstract_inverted_index.all | 76 |
| abstract_inverted_index.and | 34 |
| abstract_inverted_index.are | 109 |
| abstract_inverted_index.for | 38, 131, 146, 154, 177 |
| abstract_inverted_index.set | 114 |
| abstract_inverted_index.the | 39, 52, 82, 94, 101, 105, 107, 118, 128, 132, 147, 161 |
| abstract_inverted_index.able | 12 |
| abstract_inverted_index.data | 71 |
| abstract_inverted_index.each | 47, 55 |
| abstract_inverted_index.find | 14, 69 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.main | 25 |
| abstract_inverted_index.part | 79, 103 |
| abstract_inverted_index.path | 83 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.that | 160 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.tool | 45 |
| abstract_inverted_index.used | 110 |
| abstract_inverted_index.based | 92 |
| abstract_inverted_index.class | 148 |
| abstract_inverted_index.level | 145 |
| abstract_inverted_index.novel | 86 |
| abstract_inverted_index.paper | 4 |
| abstract_inverted_index.part, | 120 |
| abstract_inverted_index.third | 119 |
| abstract_inverted_index.this, | 81 |
| abstract_inverted_index.three | 24 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.which | 10, 173 |
| abstract_inverted_index.while | 50 |
| abstract_inverted_index.Forest | 66, 96, 123 |
| abstract_inverted_index.Random | 65, 95, 122 |
| abstract_inverted_index.define | 112 |
| abstract_inverted_index.ensure | 141 |
| abstract_inverted_index.method | 151, 163 |
| abstract_inverted_index.models | 46 |
| abstract_inverted_index.other. | 56 |
| abstract_inverted_index.phase. | 41, 134 |
| abstract_inverted_index.second | 102 |
| abstract_inverted_index.applied | 153 |
| abstract_inverted_index.between | 54, 75 |
| abstract_inverted_index.certain | 143 |
| abstract_inverted_index.defined | 129 |
| abstract_inverted_index.highway | 155 |
| abstract_inverted_index.measure | 74 |
| abstract_inverted_index.method, | 9 |
| abstract_inverted_index.provide | 7 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.testing | 178 |
| abstract_inverted_index.traffic | 17, 29, 171 |
| abstract_inverted_index.trained | 126 |
| abstract_inverted_index.vehicle | 48, 180 |
| abstract_inverted_index.adaptive | 72 |
| abstract_inverted_index.approach | 59, 167 |
| abstract_inverted_index.clusters | 130 |
| abstract_inverted_index.consists | 22, 60 |
| abstract_inverted_index.modified | 63 |
| abstract_inverted_index.proposed | 162 |
| abstract_inverted_index.relevant | 176 |
| abstract_inverted_index.algorithm | 67, 97 |
| abstract_inverted_index.clusters. | 116 |
| abstract_inverted_index.described | 139 |
| abstract_inverted_index.determine | 89 |
| abstract_inverted_index.developed | 43 |
| abstract_inverted_index.excellent | 166 |
| abstract_inverted_index.scenarios | 18 |
| abstract_inverted_index.technique | 33, 37, 87, 137 |
| abstract_inverted_index.autonomous | 179 |
| abstract_inverted_index.categories | 15 |
| abstract_inverted_index.categorize | 170 |
| abstract_inverted_index.classifier | 124 |
| abstract_inverted_index.clustering | 32, 58 |
| abstract_inverted_index.confidence | 144 |
| abstract_inverted_index.presented. | 99 |
| abstract_inverted_index.proximity, | 84 |
| abstract_inverted_index.scenarios, | 172 |
| abstract_inverted_index.scenarios. | 77, 156 |
| abstract_inverted_index.similarity | 73, 91 |
| abstract_inverted_index.simulation | 44 |
| abstract_inverted_index.assignment. | 149 |
| abstract_inverted_index.clustering, | 106 |
| abstract_inverted_index.components: | 26 |
| abstract_inverted_index.maintaining | 51 |
| abstract_inverted_index.microscopic | 28 |
| abstract_inverted_index.operational | 40, 133 |
| abstract_inverted_index.separately, | 49 |
| abstract_inverted_index.simulation, | 30 |
| abstract_inverted_index.architecture | 21 |
| abstract_inverted_index.dependencies | 53 |
| abstract_inverted_index.particularly | 175 |
| abstract_inverted_index.similarities | 108 |
| abstract_inverted_index.thresholding | 136 |
| abstract_inverted_index.unsupervised | 64 |
| abstract_inverted_index.automatically | 169 |
| abstract_inverted_index.automatically. | 19 |
| abstract_inverted_index.classification | 36 |
| abstract_inverted_index.functionality. | 181 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.45287178 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |