Unsupervised Data Selection via Discrete Speech Representation for ASR Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.01981
Self-supervised learning of speech representations has achieved impressive results in improving automatic speech recognition (ASR). In this paper, we show that data selection is important for self-supervised learning. We propose a simple and effective unsupervised data selection method which selects acoustically similar speech to a target domain. It takes the discrete speech representation available in common self-supervised learning frameworks as input, and applies a contrastive data selection method on the discrete tokens. Through extensive empirical studies we show that our proposed method reduces the amount of required pre-training data and improves the downstream ASR performance. Pre-training on a selected subset of 6% of the general data pool results in 11.8% relative improvements in LibriSpeech test-other compared to pre-training on the full set. On Multilingual LibriSpeech French, German, and Spanish test sets, selecting 6% data for pre-training reduces word error rate by more than 15% relatively compared to the full set, and achieves competitive results compared to current state-of-the-art performances.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.01981
- https://arxiv.org/pdf/2204.01981
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226069388
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226069388Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.01981Digital Object Identifier
- Title
-
Unsupervised Data Selection via Discrete Speech Representation for ASRWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-05Full publication date if available
- Authors
-
Zhiyun Lu, Yongqiang Wang, Yu Zhang, Wei Han, Zhehuai Chen, Parisa HaghaniList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.01981Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.01981Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.01981Direct OA link when available
- Concepts
-
Computer science, Selection (genetic algorithm), Word error rate, Training set, Representation (politics), Speech recognition, Set (abstract data type), Labeled data, Artificial intelligence, Test data, Test set, Word (group theory), Data set, Machine learning, Natural language processing, Mathematics, Politics, Programming language, Law, Political science, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226069388 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.01981 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.01981 |
| ids.openalex | https://openalex.org/W4226069388 |
| fwci | |
| type | preprint |
| title | Unsupervised Data Selection via Discrete Speech Representation for ASR |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T11309 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9855999946594238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Music and Audio Processing |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7672361135482788 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6350440979003906 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C40969351 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5595206022262573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3516228 |
| concepts[2].display_name | Word error rate |
| concepts[3].id | https://openalex.org/C51632099 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5364644527435303 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[3].display_name | Training set |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5324194431304932 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5297466516494751 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5140898823738098 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C2776145971 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4964771866798401 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[7].display_name | Labeled data |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4922894537448883 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C16910744 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45456790924072266 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7705759 |
| concepts[9].display_name | Test data |
| concepts[10].id | https://openalex.org/C169903167 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43972715735435486 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[10].display_name | Test set |
| concepts[11].id | https://openalex.org/C90805587 |
| concepts[11].level | 2 |
| concepts[11].score | 0.435777485370636 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[11].display_name | Word (group theory) |
| concepts[12].id | https://openalex.org/C58489278 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4260680675506592 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[12].display_name | Data set |
| concepts[13].id | https://openalex.org/C119857082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.40565037727355957 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[13].display_name | Machine learning |
| concepts[14].id | https://openalex.org/C204321447 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32495713233947754 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[14].display_name | Natural language processing |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12894442677497864 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C199539241 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[18].display_name | Law |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C2524010 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[20].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7672361135482788 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.6350440979003906 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/word-error-rate |
| keywords[2].score | 0.5595206022262573 |
| keywords[2].display_name | Word error rate |
| keywords[3].id | https://openalex.org/keywords/training-set |
| keywords[3].score | 0.5364644527435303 |
| keywords[3].display_name | Training set |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5324194431304932 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.5297466516494751 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.5140898823738098 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/labeled-data |
| keywords[7].score | 0.4964771866798401 |
| keywords[7].display_name | Labeled data |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4922894537448883 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/test-data |
| keywords[9].score | 0.45456790924072266 |
| keywords[9].display_name | Test data |
| keywords[10].id | https://openalex.org/keywords/test-set |
| keywords[10].score | 0.43972715735435486 |
| keywords[10].display_name | Test set |
| keywords[11].id | https://openalex.org/keywords/word |
| keywords[11].score | 0.435777485370636 |
| keywords[11].display_name | Word (group theory) |
| keywords[12].id | https://openalex.org/keywords/data-set |
| keywords[12].score | 0.4260680675506592 |
| keywords[12].display_name | Data set |
| keywords[13].id | https://openalex.org/keywords/machine-learning |
| keywords[13].score | 0.40565037727355957 |
| keywords[13].display_name | Machine learning |
| keywords[14].id | https://openalex.org/keywords/natural-language-processing |
| keywords[14].score | 0.32495713233947754 |
| keywords[14].display_name | Natural language processing |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.12894442677497864 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.01981 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | public-domain |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.01981 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.01981 |
| locations[1].id | doi:10.48550/arxiv.2204.01981 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.01981 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5039693533 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1733-4061 |
| authorships[0].author.display_name | Zhiyun Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Zhiyun |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100339989 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8600-0276 |
| authorships[1].author.display_name | Yongqiang Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Yongqiang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100433691 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1100-4835 |
| authorships[2].author.display_name | Yu Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Yu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5107931312 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0809-5465 |
| authorships[3].author.display_name | Wei Han |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Han, Wei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5002433660 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4400-5340 |
| authorships[4].author.display_name | Zhehuai Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Zhehuai |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5037705635 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Parisa Haghani |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Haghani, Parisa |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.01981 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Data Selection via Discrete Speech Representation for ASR |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W1999699871, https://openalex.org/W2145230572, https://openalex.org/W4225124612, https://openalex.org/W2130553454, https://openalex.org/W2043806667, https://openalex.org/W3022007134, https://openalex.org/W4317548404, https://openalex.org/W2146197305, https://openalex.org/W2021633306, https://openalex.org/W3019226033 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.01981 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.01981 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.01981 |
| primary_location.id | pmh:oai:arXiv.org:2204.01981 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | public-domain |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.01981 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.01981 |
| publication_date | 2022-04-05 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 30, 44, 63, 97 |
| abstract_inverted_index.6% | 101, 132 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.It | 47 |
| abstract_inverted_index.On | 122 |
| abstract_inverted_index.We | 28 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.by | 140 |
| abstract_inverted_index.in | 9, 54, 108, 112 |
| abstract_inverted_index.is | 23 |
| abstract_inverted_index.of | 2, 85, 100, 102 |
| abstract_inverted_index.on | 68, 96, 118 |
| abstract_inverted_index.to | 43, 116, 146, 155 |
| abstract_inverted_index.we | 18, 76 |
| abstract_inverted_index.15% | 143 |
| abstract_inverted_index.ASR | 93 |
| abstract_inverted_index.and | 32, 61, 89, 127, 150 |
| abstract_inverted_index.for | 25, 134 |
| abstract_inverted_index.has | 5 |
| abstract_inverted_index.our | 79 |
| abstract_inverted_index.the | 49, 69, 83, 91, 103, 119, 147 |
| abstract_inverted_index.data | 21, 35, 65, 88, 105, 133 |
| abstract_inverted_index.full | 120, 148 |
| abstract_inverted_index.more | 141 |
| abstract_inverted_index.pool | 106 |
| abstract_inverted_index.rate | 139 |
| abstract_inverted_index.set, | 149 |
| abstract_inverted_index.set. | 121 |
| abstract_inverted_index.show | 19, 77 |
| abstract_inverted_index.test | 129 |
| abstract_inverted_index.than | 142 |
| abstract_inverted_index.that | 20, 78 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.word | 137 |
| abstract_inverted_index.11.8% | 109 |
| abstract_inverted_index.error | 138 |
| abstract_inverted_index.sets, | 130 |
| abstract_inverted_index.takes | 48 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.(ASR). | 14 |
| abstract_inverted_index.amount | 84 |
| abstract_inverted_index.common | 55 |
| abstract_inverted_index.input, | 60 |
| abstract_inverted_index.method | 37, 67, 81 |
| abstract_inverted_index.paper, | 17 |
| abstract_inverted_index.simple | 31 |
| abstract_inverted_index.speech | 3, 12, 42, 51 |
| abstract_inverted_index.subset | 99 |
| abstract_inverted_index.target | 45 |
| abstract_inverted_index.French, | 125 |
| abstract_inverted_index.German, | 126 |
| abstract_inverted_index.Spanish | 128 |
| abstract_inverted_index.Through | 72 |
| abstract_inverted_index.applies | 62 |
| abstract_inverted_index.current | 156 |
| abstract_inverted_index.domain. | 46 |
| abstract_inverted_index.general | 104 |
| abstract_inverted_index.propose | 29 |
| abstract_inverted_index.reduces | 82, 136 |
| abstract_inverted_index.results | 8, 107, 153 |
| abstract_inverted_index.selects | 39 |
| abstract_inverted_index.similar | 41 |
| abstract_inverted_index.studies | 75 |
| abstract_inverted_index.tokens. | 71 |
| abstract_inverted_index.achieved | 6 |
| abstract_inverted_index.achieves | 151 |
| abstract_inverted_index.compared | 115, 145, 154 |
| abstract_inverted_index.discrete | 50, 70 |
| abstract_inverted_index.improves | 90 |
| abstract_inverted_index.learning | 1, 57 |
| abstract_inverted_index.proposed | 80 |
| abstract_inverted_index.relative | 110 |
| abstract_inverted_index.required | 86 |
| abstract_inverted_index.selected | 98 |
| abstract_inverted_index.automatic | 11 |
| abstract_inverted_index.available | 53 |
| abstract_inverted_index.effective | 33 |
| abstract_inverted_index.empirical | 74 |
| abstract_inverted_index.extensive | 73 |
| abstract_inverted_index.important | 24 |
| abstract_inverted_index.improving | 10 |
| abstract_inverted_index.learning. | 27 |
| abstract_inverted_index.selecting | 131 |
| abstract_inverted_index.selection | 22, 36, 66 |
| abstract_inverted_index.downstream | 92 |
| abstract_inverted_index.frameworks | 58 |
| abstract_inverted_index.impressive | 7 |
| abstract_inverted_index.relatively | 144 |
| abstract_inverted_index.test-other | 114 |
| abstract_inverted_index.LibriSpeech | 113, 124 |
| abstract_inverted_index.competitive | 152 |
| abstract_inverted_index.contrastive | 64 |
| abstract_inverted_index.recognition | 13 |
| abstract_inverted_index.Multilingual | 123 |
| abstract_inverted_index.Pre-training | 95 |
| abstract_inverted_index.acoustically | 40 |
| abstract_inverted_index.improvements | 111 |
| abstract_inverted_index.performance. | 94 |
| abstract_inverted_index.pre-training | 87, 117, 135 |
| abstract_inverted_index.unsupervised | 34 |
| abstract_inverted_index.performances. | 158 |
| abstract_inverted_index.representation | 52 |
| abstract_inverted_index.Self-supervised | 0 |
| abstract_inverted_index.representations | 4 |
| abstract_inverted_index.self-supervised | 26, 56 |
| abstract_inverted_index.state-of-the-art | 157 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |