Unsupervised deep clustering for predictive texture pattern discovery in medical images Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2002.03721
Predictive marker patterns in imaging data are a means to quantify disease and progression, but their identification is challenging, if the underlying biology is poorly understood. Here, we present a method to identify predictive texture patterns in medical images in an unsupervised way. Based on deep clustering networks, we simultaneously encode and cluster medical image patches in a low-dimensional latent space. The resulting clusters serve as features for disease staging, linking them to the underlying disease. We evaluate the method on 70 T1-weighted magnetic resonance images of patients with different stages of liver steatosis. The deep clustering approach is able to find predictive clusters with a stable ranking, differentiating between low and high steatosis with an F1-Score of 0.78.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2002.03721
- https://arxiv.org/pdf/2002.03721
- OA Status
- green
- Cited By
- 2
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3005268706
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3005268706Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2002.03721Digital Object Identifier
- Title
-
Unsupervised deep clustering for predictive texture pattern discovery in medical imagesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-31Full publication date if available
- Authors
-
Matthias Perkonigg, Daniel Sobotka, Ahmed Ba‐Ssalamah, Georg LangsList of authors in order
- Landing page
-
https://arxiv.org/abs/2002.03721Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2002.03721Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2002.03721Direct OA link when available
- Concepts
-
Artificial intelligence, Cluster analysis, Pattern recognition (psychology), Computer science, Texture (cosmology), Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3005268706 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2002.03721 |
| ids.doi | https://doi.org/10.48550/arxiv.2002.03721 |
| ids.mag | 3005268706 |
| ids.openalex | https://openalex.org/W3005268706 |
| fwci | |
| type | preprint |
| title | Unsupervised deep clustering for predictive texture pattern discovery in medical images |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10862 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9973999857902527 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | AI in cancer detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.710932731628418 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6499534249305725 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6070741415023804 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5452460050582886 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C2781195486 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5418605804443359 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q289436 |
| concepts[4].display_name | Texture (cosmology) |
| concepts[5].id | https://openalex.org/C115961682 |
| concepts[5].level | 2 |
| concepts[5].score | 0.2689855098724365 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[5].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.710932731628418 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.6499534249305725 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6070741415023804 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5452460050582886 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/texture |
| keywords[4].score | 0.5418605804443359 |
| keywords[4].display_name | Texture (cosmology) |
| keywords[5].id | https://openalex.org/keywords/image |
| keywords[5].score | 0.2689855098724365 |
| keywords[5].display_name | Image (mathematics) |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2002.03721 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2002.03721 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2002.03721 |
| locations[1].id | doi:10.48550/arxiv.2002.03721 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2002.03721 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037904616 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9107-4755 |
| authorships[0].author.display_name | Matthias Perkonigg |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Matthias Perkonigg |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5041200163 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Daniel Sobotka |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Daniel Sobotka |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5062078348 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3527-404X |
| authorships[2].author.display_name | Ahmed Ba‐Ssalamah |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ahmed Ba-Ssalamah |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5060814361 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5536-6873 |
| authorships[3].author.display_name | Georg Langs |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Georg Langs |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2002.03721 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised deep clustering for predictive texture pattern discovery in medical images |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2478288626, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2002.03721 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2002.03721 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2002.03721 |
| primary_location.id | pmh:oai:arXiv.org:2002.03721 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2002.03721 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2002.03721 |
| publication_date | 2020-01-31 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1901129140, https://openalex.org/W2962852342, https://openalex.org/W2135046866, https://openalex.org/W2131846894, https://openalex.org/W2883725317, https://openalex.org/W2067740038, https://openalex.org/W3121324630, https://openalex.org/W2433376106, https://openalex.org/W2962761061, https://openalex.org/W2533545350, https://openalex.org/W2150593711, https://openalex.org/W2911964244 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 7, 29, 57, 105 |
| abstract_inverted_index.70 | 81 |
| abstract_inverted_index.We | 76 |
| abstract_inverted_index.an | 40, 115 |
| abstract_inverted_index.as | 65 |
| abstract_inverted_index.if | 19 |
| abstract_inverted_index.in | 3, 36, 39, 56 |
| abstract_inverted_index.is | 17, 23, 98 |
| abstract_inverted_index.of | 86, 91, 117 |
| abstract_inverted_index.on | 44, 80 |
| abstract_inverted_index.to | 9, 31, 72, 100 |
| abstract_inverted_index.we | 27, 48 |
| abstract_inverted_index.The | 61, 94 |
| abstract_inverted_index.and | 12, 51, 111 |
| abstract_inverted_index.are | 6 |
| abstract_inverted_index.but | 14 |
| abstract_inverted_index.for | 67 |
| abstract_inverted_index.low | 110 |
| abstract_inverted_index.the | 20, 73, 78 |
| abstract_inverted_index.able | 99 |
| abstract_inverted_index.data | 5 |
| abstract_inverted_index.deep | 45, 95 |
| abstract_inverted_index.find | 101 |
| abstract_inverted_index.high | 112 |
| abstract_inverted_index.them | 71 |
| abstract_inverted_index.way. | 42 |
| abstract_inverted_index.with | 88, 104, 114 |
| abstract_inverted_index.0.78. | 118 |
| abstract_inverted_index.Based | 43 |
| abstract_inverted_index.Here, | 26 |
| abstract_inverted_index.image | 54 |
| abstract_inverted_index.liver | 92 |
| abstract_inverted_index.means | 8 |
| abstract_inverted_index.serve | 64 |
| abstract_inverted_index.their | 15 |
| abstract_inverted_index.encode | 50 |
| abstract_inverted_index.images | 38, 85 |
| abstract_inverted_index.latent | 59 |
| abstract_inverted_index.marker | 1 |
| abstract_inverted_index.method | 30, 79 |
| abstract_inverted_index.poorly | 24 |
| abstract_inverted_index.space. | 60 |
| abstract_inverted_index.stable | 106 |
| abstract_inverted_index.stages | 90 |
| abstract_inverted_index.between | 109 |
| abstract_inverted_index.biology | 22 |
| abstract_inverted_index.cluster | 52 |
| abstract_inverted_index.disease | 11, 68 |
| abstract_inverted_index.imaging | 4 |
| abstract_inverted_index.linking | 70 |
| abstract_inverted_index.medical | 37, 53 |
| abstract_inverted_index.patches | 55 |
| abstract_inverted_index.present | 28 |
| abstract_inverted_index.texture | 34 |
| abstract_inverted_index.F1-Score | 116 |
| abstract_inverted_index.approach | 97 |
| abstract_inverted_index.clusters | 63, 103 |
| abstract_inverted_index.disease. | 75 |
| abstract_inverted_index.evaluate | 77 |
| abstract_inverted_index.features | 66 |
| abstract_inverted_index.identify | 32 |
| abstract_inverted_index.magnetic | 83 |
| abstract_inverted_index.patients | 87 |
| abstract_inverted_index.patterns | 2, 35 |
| abstract_inverted_index.quantify | 10 |
| abstract_inverted_index.ranking, | 107 |
| abstract_inverted_index.staging, | 69 |
| abstract_inverted_index.different | 89 |
| abstract_inverted_index.networks, | 47 |
| abstract_inverted_index.resonance | 84 |
| abstract_inverted_index.resulting | 62 |
| abstract_inverted_index.steatosis | 113 |
| abstract_inverted_index.Predictive | 0 |
| abstract_inverted_index.clustering | 46, 96 |
| abstract_inverted_index.predictive | 33, 102 |
| abstract_inverted_index.steatosis. | 93 |
| abstract_inverted_index.underlying | 21, 74 |
| abstract_inverted_index.T1-weighted | 82 |
| abstract_inverted_index.understood. | 25 |
| abstract_inverted_index.challenging, | 18 |
| abstract_inverted_index.progression, | 13 |
| abstract_inverted_index.unsupervised | 41 |
| abstract_inverted_index.identification | 16 |
| abstract_inverted_index.simultaneously | 49 |
| abstract_inverted_index.differentiating | 108 |
| abstract_inverted_index.low-dimensional | 58 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |