Unsupervised deep learning framework for temperature-compensated damage assessment using ultrasonic guided waves on edge device Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-024-54418-w
Fueled by the rapid development of machine learning (ML) and greater access to cloud computing and graphics processing units, various deep learning based models have been proposed for improving performance of ultrasonic guided wave structural health monitoring (GW-SHM) systems, especially to counter complexity and heterogeneity in data due to varying environmental factors (e.g., temperature) and types of damages. Such models typically comprise of millions of trainable parameters, and therefore add to cost of deployment due to requirements of cloud connectivity and processing, thus limiting the scale of deployment of GW-SHM. In this work, we propose an alternative solution that leverages TinyML framework for development of light-weight ML models that could be directly deployed on embedded edge devices. The utility of our solution is illustrated by presenting an unsupervised learning framework for damage detection in honeycomb composite sandwich structure with disbond and delamination type of damages, validated using data generated by finite element simulations and experiments performed at various temperatures in the range 0–90 °C. We demonstrate a fully-integrated solution using a Xilinx Artix-7 FPGA for data acquisition and control, and edge-inference of damage. Despite the limited number of features, the lightweight model shows reasonably high accuracy, thereby enabling detection of small size defects with improved sensitivity on an edge device for online GW-SHM.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-024-54418-w
- https://www.nature.com/articles/s41598-024-54418-w.pdf
- OA Status
- gold
- Cited By
- 14
- References
- 37
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391811851
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391811851Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-024-54418-wDigital Object Identifier
- Title
-
Unsupervised deep learning framework for temperature-compensated damage assessment using ultrasonic guided waves on edge deviceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-14Full publication date if available
- Authors
-
Pankhi Kashyap, Kajal Shivgan, Sheetal Patil, B. Ramana Raja, S. B. Mahajan, Sauvik Banerjee, Siddharth TallurList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-024-54418-wPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-024-54418-w.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-024-54418-w.pdfDirect OA link when available
- Concepts
-
Computer science, Structural health monitoring, Deep learning, Enhanced Data Rates for GSM Evolution, Delamination (geology), Edge computing, Cloud computing, Ultrasonic sensor, Inference, Software deployment, Artificial intelligence, Machine learning, Materials science, Acoustics, Paleontology, Subduction, Operating system, Physics, Biology, Composite material, TectonicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
37Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391811851 |
|---|---|
| doi | https://doi.org/10.1038/s41598-024-54418-w |
| ids.doi | https://doi.org/10.1038/s41598-024-54418-w |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38355983 |
| ids.openalex | https://openalex.org/W4391811851 |
| fwci | 6.99762354 |
| type | article |
| title | Unsupervised deep learning framework for temperature-compensated damage assessment using ultrasonic guided waves on edge device |
| awards[0].id | https://openalex.org/G3401223185 |
| awards[0].funder_id | https://openalex.org/F4320334771 |
| awards[0].display_name | |
| awards[0].funder_award_id | CRG/2021/001959 |
| awards[0].funder_display_name | Science and Engineering Research Board |
| awards[1].id | https://openalex.org/G5128107854 |
| awards[1].funder_id | https://openalex.org/F4320320722 |
| awards[1].display_name | |
| awards[1].funder_award_id | RD/0118-ISROC00-006 |
| awards[1].funder_display_name | Indian Space Research Organisation |
| biblio.issue | 1 |
| biblio.volume | 14 |
| biblio.last_page | 3751 |
| biblio.first_page | 3751 |
| topics[0].id | https://openalex.org/T10662 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Ultrasonics and Acoustic Wave Propagation |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T12169 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9994000196456909 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Non-Destructive Testing Techniques |
| funders[0].id | https://openalex.org/F4320320722 |
| funders[0].ror | https://ror.org/00cwrns71 |
| funders[0].display_name | Indian Space Research Organisation |
| funders[1].id | https://openalex.org/F4320334771 |
| funders[1].ror | https://ror.org/03ffdsr55 |
| funders[1].display_name | Science and Engineering Research Board |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7228230834007263 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2776247918 |
| concepts[1].level | 2 |
| concepts[1].score | 0.554231584072113 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423713 |
| concepts[1].display_name | Structural health monitoring |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5119910836219788 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C162307627 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5012741088867188 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q204833 |
| concepts[3].display_name | Enhanced Data Rates for GSM Evolution |
| concepts[4].id | https://openalex.org/C30239060 |
| concepts[4].level | 4 |
| concepts[4].score | 0.49676305055618286 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5253111 |
| concepts[4].display_name | Delamination (geology) |
| concepts[5].id | https://openalex.org/C2778456923 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4777480959892273 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5337692 |
| concepts[5].display_name | Edge computing |
| concepts[6].id | https://openalex.org/C79974875 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44845834374427795 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[6].display_name | Cloud computing |
| concepts[7].id | https://openalex.org/C81288441 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4352457523345947 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q20736125 |
| concepts[7].display_name | Ultrasonic sensor |
| concepts[8].id | https://openalex.org/C2776214188 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4251103699207306 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[8].display_name | Inference |
| concepts[9].id | https://openalex.org/C105339364 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4200403094291687 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2297740 |
| concepts[9].display_name | Software deployment |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3976587951183319 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3883744776248932 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.2685941159725189 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C24890656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13651546835899353 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[13].display_name | Acoustics |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| concepts[15].id | https://openalex.org/C58097730 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q176318 |
| concepts[15].display_name | Subduction |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C86803240 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[18].display_name | Biology |
| concepts[19].id | https://openalex.org/C159985019 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[19].display_name | Composite material |
| concepts[20].id | https://openalex.org/C77928131 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q193343 |
| concepts[20].display_name | Tectonics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7228230834007263 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/structural-health-monitoring |
| keywords[1].score | 0.554231584072113 |
| keywords[1].display_name | Structural health monitoring |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.5119910836219788 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/enhanced-data-rates-for-gsm-evolution |
| keywords[3].score | 0.5012741088867188 |
| keywords[3].display_name | Enhanced Data Rates for GSM Evolution |
| keywords[4].id | https://openalex.org/keywords/delamination |
| keywords[4].score | 0.49676305055618286 |
| keywords[4].display_name | Delamination (geology) |
| keywords[5].id | https://openalex.org/keywords/edge-computing |
| keywords[5].score | 0.4777480959892273 |
| keywords[5].display_name | Edge computing |
| keywords[6].id | https://openalex.org/keywords/cloud-computing |
| keywords[6].score | 0.44845834374427795 |
| keywords[6].display_name | Cloud computing |
| keywords[7].id | https://openalex.org/keywords/ultrasonic-sensor |
| keywords[7].score | 0.4352457523345947 |
| keywords[7].display_name | Ultrasonic sensor |
| keywords[8].id | https://openalex.org/keywords/inference |
| keywords[8].score | 0.4251103699207306 |
| keywords[8].display_name | Inference |
| keywords[9].id | https://openalex.org/keywords/software-deployment |
| keywords[9].score | 0.4200403094291687 |
| keywords[9].display_name | Software deployment |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3976587951183319 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3883744776248932 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/materials-science |
| keywords[12].score | 0.2685941159725189 |
| keywords[12].display_name | Materials science |
| keywords[13].id | https://openalex.org/keywords/acoustics |
| keywords[13].score | 0.13651546835899353 |
| keywords[13].display_name | Acoustics |
| language | en |
| locations[0].id | doi:10.1038/s41598-024-54418-w |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-024-54418-w.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-024-54418-w |
| locations[1].id | pmid:38355983 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38355983 |
| locations[2].id | pmh:oai:doaj.org/article:9e459dd5ad74484eadb24cfb81b00e3f |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024) |
| locations[2].landing_page_url | https://doaj.org/article/9e459dd5ad74484eadb24cfb81b00e3f |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11316024 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11316024 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5092395693 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Pankhi Kashyap |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[0].institutions[0].id | https://openalex.org/I162827531 |
| authorships[0].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pankhi Kashyap |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[1].author.id | https://openalex.org/A5081766633 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6731-079X |
| authorships[1].author.display_name | Kajal Shivgan |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[1].institutions[0].id | https://openalex.org/I162827531 |
| authorships[1].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kajal Shivgan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[2].author.id | https://openalex.org/A5108848338 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sheetal Patil |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[2].institutions[0].id | https://openalex.org/I162827531 |
| authorships[2].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sheetal Patil |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[3].author.id | https://openalex.org/A5108901115 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | B. Ramana Raja |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering (CE), IIT Bombay, Mumbai, 400076, India |
| authorships[3].institutions[0].id | https://openalex.org/I162827531 |
| authorships[3].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | B. Ramana Raja |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering (CE), IIT Bombay, Mumbai, 400076, India |
| authorships[4].author.id | https://openalex.org/A5110965915 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | S. B. Mahajan |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[4].institutions[0].id | https://openalex.org/I162827531 |
| authorships[4].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sagar Mahajan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[5].author.id | https://openalex.org/A5021095639 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2290-9122 |
| authorships[5].author.display_name | Sauvik Banerjee |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Civil Engineering (CE), IIT Bombay, Mumbai, 400076, India |
| authorships[5].institutions[0].id | https://openalex.org/I162827531 |
| authorships[5].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Sauvik Banerjee |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Civil Engineering (CE), IIT Bombay, Mumbai, 400076, India |
| authorships[6].author.id | https://openalex.org/A5072493084 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1399-2187 |
| authorships[6].author.display_name | Siddharth Tallur |
| authorships[6].countries | IN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| authorships[6].institutions[0].id | https://openalex.org/I162827531 |
| authorships[6].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[6].institutions[0].country_code | IN |
| authorships[6].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Siddharth Tallur |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Electrical Engineering (EE), IIT Bombay, Mumbai, 400076, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-024-54418-w.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised deep learning framework for temperature-compensated damage assessment using ultrasonic guided waves on edge device |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10662 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Ultrasonics and Acoustic Wave Propagation |
| related_works | https://openalex.org/W2770234245, https://openalex.org/W96612179, https://openalex.org/W4229499248, https://openalex.org/W2566006169, https://openalex.org/W1567818861, https://openalex.org/W2987774938, https://openalex.org/W4256492088, https://openalex.org/W632915154, https://openalex.org/W2055733372, https://openalex.org/W2787176236 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-024-54418-w |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-024-54418-w.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-024-54418-w |
| primary_location.id | doi:10.1038/s41598-024-54418-w |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-024-54418-w.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-024-54418-w |
| publication_date | 2024-02-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2320998174, https://openalex.org/W3161130775, https://openalex.org/W2922480916, https://openalex.org/W3110031974, https://openalex.org/W2015688155, https://openalex.org/W1991033446, https://openalex.org/W2045462581, https://openalex.org/W2150869884, https://openalex.org/W2789708780, https://openalex.org/W2972106074, https://openalex.org/W3098340457, https://openalex.org/W2907510400, https://openalex.org/W3183477965, https://openalex.org/W4220954787, https://openalex.org/W3138159753, https://openalex.org/W3173670101, https://openalex.org/W4317493070, https://openalex.org/W3067862503, https://openalex.org/W2416799949, https://openalex.org/W2910096450, https://openalex.org/W3093348380, https://openalex.org/W4225847093, https://openalex.org/W4213120953, https://openalex.org/W4387447399, https://openalex.org/W4383100695, https://openalex.org/W2137042746, https://openalex.org/W1949971277, https://openalex.org/W4307040799, https://openalex.org/W2824125274, https://openalex.org/W2062468804, https://openalex.org/W4321107626, https://openalex.org/W2416363813, https://openalex.org/W3014046978, https://openalex.org/W4223574512, https://openalex.org/W4224239850, https://openalex.org/W4380356212, https://openalex.org/W4322761722 |
| referenced_works_count | 37 |
| abstract_inverted_index.a | 167, 171 |
| abstract_inverted_index.In | 91 |
| abstract_inverted_index.ML | 107 |
| abstract_inverted_index.We | 165 |
| abstract_inverted_index.an | 96, 127, 208 |
| abstract_inverted_index.at | 157 |
| abstract_inverted_index.be | 111 |
| abstract_inverted_index.by | 2, 125, 150 |
| abstract_inverted_index.in | 46, 134, 160 |
| abstract_inverted_index.is | 123 |
| abstract_inverted_index.of | 6, 31, 57, 63, 65, 73, 78, 87, 89, 105, 120, 144, 182, 188, 200 |
| abstract_inverted_index.on | 114, 207 |
| abstract_inverted_index.to | 13, 41, 49, 71, 76 |
| abstract_inverted_index.we | 94 |
| abstract_inverted_index.The | 118 |
| abstract_inverted_index.add | 70 |
| abstract_inverted_index.and | 10, 16, 44, 55, 68, 81, 141, 154, 178, 180 |
| abstract_inverted_index.due | 48, 75 |
| abstract_inverted_index.for | 28, 103, 131, 175, 211 |
| abstract_inverted_index.our | 121 |
| abstract_inverted_index.the | 3, 85, 161, 185, 190 |
| abstract_inverted_index.(ML) | 9 |
| abstract_inverted_index.FPGA | 174 |
| abstract_inverted_index.Such | 59 |
| abstract_inverted_index.been | 26 |
| abstract_inverted_index.cost | 72 |
| abstract_inverted_index.data | 47, 148, 176 |
| abstract_inverted_index.deep | 21 |
| abstract_inverted_index.edge | 116, 209 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.high | 195 |
| abstract_inverted_index.size | 202 |
| abstract_inverted_index.that | 99, 109 |
| abstract_inverted_index.this | 92 |
| abstract_inverted_index.thus | 83 |
| abstract_inverted_index.type | 143 |
| abstract_inverted_index.wave | 34 |
| abstract_inverted_index.with | 139, 204 |
| abstract_inverted_index.°C. | 164 |
| abstract_inverted_index.based | 23 |
| abstract_inverted_index.cloud | 14, 79 |
| abstract_inverted_index.could | 110 |
| abstract_inverted_index.model | 192 |
| abstract_inverted_index.range | 162 |
| abstract_inverted_index.rapid | 4 |
| abstract_inverted_index.scale | 86 |
| abstract_inverted_index.shows | 193 |
| abstract_inverted_index.small | 201 |
| abstract_inverted_index.types | 56 |
| abstract_inverted_index.using | 147, 170 |
| abstract_inverted_index.work, | 93 |
| abstract_inverted_index.(e.g., | 53 |
| abstract_inverted_index.0–90 | 163 |
| abstract_inverted_index.Fueled | 1 |
| abstract_inverted_index.TinyML | 101 |
| abstract_inverted_index.Xilinx | 172 |
| abstract_inverted_index.access | 12 |
| abstract_inverted_index.damage | 132 |
| abstract_inverted_index.device | 210 |
| abstract_inverted_index.finite | 151 |
| abstract_inverted_index.guided | 33 |
| abstract_inverted_index.health | 36 |
| abstract_inverted_index.models | 24, 60, 108 |
| abstract_inverted_index.number | 187 |
| abstract_inverted_index.online | 212 |
| abstract_inverted_index.units, | 19 |
| abstract_inverted_index.Artix-7 | 173 |
| abstract_inverted_index.Despite | 184 |
| abstract_inverted_index.GW-SHM. | 90, 213 |
| abstract_inverted_index.counter | 42 |
| abstract_inverted_index.damage. | 183 |
| abstract_inverted_index.defects | 203 |
| abstract_inverted_index.disbond | 140 |
| abstract_inverted_index.element | 152 |
| abstract_inverted_index.factors | 52 |
| abstract_inverted_index.greater | 11 |
| abstract_inverted_index.limited | 186 |
| abstract_inverted_index.machine | 7 |
| abstract_inverted_index.propose | 95 |
| abstract_inverted_index.thereby | 197 |
| abstract_inverted_index.utility | 119 |
| abstract_inverted_index.various | 20, 158 |
| abstract_inverted_index.varying | 50 |
| abstract_inverted_index.(GW-SHM) | 38 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.comprise | 62 |
| abstract_inverted_index.control, | 179 |
| abstract_inverted_index.damages, | 145 |
| abstract_inverted_index.damages. | 58 |
| abstract_inverted_index.deployed | 113 |
| abstract_inverted_index.devices. | 117 |
| abstract_inverted_index.directly | 112 |
| abstract_inverted_index.embedded | 115 |
| abstract_inverted_index.enabling | 198 |
| abstract_inverted_index.graphics | 17 |
| abstract_inverted_index.improved | 205 |
| abstract_inverted_index.learning | 8, 22, 129 |
| abstract_inverted_index.limiting | 84 |
| abstract_inverted_index.millions | 64 |
| abstract_inverted_index.proposed | 27 |
| abstract_inverted_index.sandwich | 137 |
| abstract_inverted_index.solution | 98, 122, 169 |
| abstract_inverted_index.systems, | 39 |
| abstract_inverted_index.accuracy, | 196 |
| abstract_inverted_index.composite | 136 |
| abstract_inverted_index.computing | 15 |
| abstract_inverted_index.detection | 133, 199 |
| abstract_inverted_index.features, | 189 |
| abstract_inverted_index.framework | 102, 130 |
| abstract_inverted_index.generated | 149 |
| abstract_inverted_index.honeycomb | 135 |
| abstract_inverted_index.improving | 29 |
| abstract_inverted_index.leverages | 100 |
| abstract_inverted_index.performed | 156 |
| abstract_inverted_index.structure | 138 |
| abstract_inverted_index.therefore | 69 |
| abstract_inverted_index.trainable | 66 |
| abstract_inverted_index.typically | 61 |
| abstract_inverted_index.validated | 146 |
| abstract_inverted_index.complexity | 43 |
| abstract_inverted_index.deployment | 74, 88 |
| abstract_inverted_index.especially | 40 |
| abstract_inverted_index.monitoring | 37 |
| abstract_inverted_index.presenting | 126 |
| abstract_inverted_index.processing | 18 |
| abstract_inverted_index.reasonably | 194 |
| abstract_inverted_index.structural | 35 |
| abstract_inverted_index.ultrasonic | 32 |
| abstract_inverted_index.acquisition | 177 |
| abstract_inverted_index.alternative | 97 |
| abstract_inverted_index.demonstrate | 166 |
| abstract_inverted_index.development | 5, 104 |
| abstract_inverted_index.experiments | 155 |
| abstract_inverted_index.illustrated | 124 |
| abstract_inverted_index.lightweight | 191 |
| abstract_inverted_index.parameters, | 67 |
| abstract_inverted_index.performance | 30 |
| abstract_inverted_index.processing, | 82 |
| abstract_inverted_index.sensitivity | 206 |
| abstract_inverted_index.simulations | 153 |
| abstract_inverted_index.connectivity | 80 |
| abstract_inverted_index.delamination | 142 |
| abstract_inverted_index.light-weight | 106 |
| abstract_inverted_index.requirements | 77 |
| abstract_inverted_index.temperature) | 54 |
| abstract_inverted_index.temperatures | 159 |
| abstract_inverted_index.unsupervised | 128 |
| abstract_inverted_index.environmental | 51 |
| abstract_inverted_index.heterogeneity | 45 |
| abstract_inverted_index.edge-inference | 181 |
| abstract_inverted_index.fully-integrated | 168 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.9617583 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |