Unsupervised Domain Adaptation for Cross-domain Remote Sensing Object Detection Via Joint Input and Feature Space Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6642304/v1
The rapid advancement of deep learning has led to significant achievements in remote sensing object detection. However, domain shift often causes notable performance drops when models trained on one domain are applied to real-world scenarios. Unsupervised domain adaptation (UDA) offers a solution by narrowing domain gaps. Generative adversarial networks (GANs) are commonly used for this purpose, but they can degrade key textures and details in source images. To address this, we propose a method that integrates transformations in both input and feature spaces. First, we standardize image dimensions across source and target domains. Then, a Joint Color Space Transformation (JCST) module operates in the feature space to decouple and recombine color channels, preserving crucial image details while aligning data distributions. We validated our approach on a dataset containing large-, medium-, and small-scale objects, using multiple object detection models. Results show that our method boosts average detection accuracy by 2–4% on source domain images, demonstrating improved generalization and robustness in cross-domain tasks.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6642304/v1
- https://www.researchsquare.com/article/rs-6642304/latest.pdf
- OA Status
- gold
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410906176
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410906176Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6642304/v1Digital Object Identifier
- Title
-
Unsupervised Domain Adaptation for Cross-domain Remote Sensing Object Detection Via Joint Input and Feature SpaceWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-30Full publication date if available
- Authors
-
Deliang Chen, Taotao Cheng, Siyu Hong, Xilin Chen, Zixuan Lu, Yang Liu, Chen Ji, Liang ChengList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6642304/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6642304/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6642304/latest.pdfDirect OA link when available
- Concepts
-
Joint (building), Domain adaptation, Computer science, Domain (mathematical analysis), Adaptation (eye), Feature (linguistics), Space (punctuation), Artificial intelligence, Object (grammar), Object detection, Pattern recognition (psychology), Computer vision, Feature vector, Mathematics, Engineering, Psychology, Operating system, Linguistics, Classifier (UML), Mathematical analysis, Architectural engineering, Philosophy, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410906176 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6642304/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6642304/v1 |
| ids.openalex | https://openalex.org/W4410906176 |
| fwci | 0.0 |
| type | preprint |
| title | Unsupervised Domain Adaptation for Cross-domain Remote Sensing Object Detection Via Joint Input and Feature Space |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10689 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9904999732971191 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Remote-Sensing Image Classification |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9666000008583069 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9273999929428101 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C18555067 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7260779142379761 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[0].display_name | Joint (building) |
| concepts[1].id | https://openalex.org/C2776434776 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6781273484230042 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q19246213 |
| concepts[1].display_name | Domain adaptation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.668326199054718 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C36503486 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6410529017448425 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[3].display_name | Domain (mathematical analysis) |
| concepts[4].id | https://openalex.org/C139807058 |
| concepts[4].level | 2 |
| concepts[4].score | 0.633759617805481 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q352374 |
| concepts[4].display_name | Adaptation (eye) |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6029781103134155 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C2778572836 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5740347504615784 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q380933 |
| concepts[6].display_name | Space (punctuation) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5667598247528076 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5267828106880188 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C2776151529 |
| concepts[9].level | 3 |
| concepts[9].score | 0.45869582891464233 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[9].display_name | Object detection |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.458060085773468 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C31972630 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4355591833591461 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[11].display_name | Computer vision |
| concepts[12].id | https://openalex.org/C83665646 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4198874235153198 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[12].display_name | Feature vector |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.15433254837989807 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C127413603 |
| concepts[14].level | 0 |
| concepts[14].score | 0.123686283826828 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[14].display_name | Engineering |
| concepts[15].id | https://openalex.org/C15744967 |
| concepts[15].level | 0 |
| concepts[15].score | 0.11648741364479065 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[15].display_name | Psychology |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C41895202 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[17].display_name | Linguistics |
| concepts[18].id | https://openalex.org/C95623464 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[18].display_name | Classifier (UML) |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C170154142 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[20].display_name | Architectural engineering |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C169760540 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[22].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/joint |
| keywords[0].score | 0.7260779142379761 |
| keywords[0].display_name | Joint (building) |
| keywords[1].id | https://openalex.org/keywords/domain-adaptation |
| keywords[1].score | 0.6781273484230042 |
| keywords[1].display_name | Domain adaptation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.668326199054718 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/domain |
| keywords[3].score | 0.6410529017448425 |
| keywords[3].display_name | Domain (mathematical analysis) |
| keywords[4].id | https://openalex.org/keywords/adaptation |
| keywords[4].score | 0.633759617805481 |
| keywords[4].display_name | Adaptation (eye) |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.6029781103134155 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/space |
| keywords[6].score | 0.5740347504615784 |
| keywords[6].display_name | Space (punctuation) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.5667598247528076 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/object |
| keywords[8].score | 0.5267828106880188 |
| keywords[8].display_name | Object (grammar) |
| keywords[9].id | https://openalex.org/keywords/object-detection |
| keywords[9].score | 0.45869582891464233 |
| keywords[9].display_name | Object detection |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.458060085773468 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/computer-vision |
| keywords[11].score | 0.4355591833591461 |
| keywords[11].display_name | Computer vision |
| keywords[12].id | https://openalex.org/keywords/feature-vector |
| keywords[12].score | 0.4198874235153198 |
| keywords[12].display_name | Feature vector |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.15433254837989807 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/engineering |
| keywords[14].score | 0.123686283826828 |
| keywords[14].display_name | Engineering |
| keywords[15].id | https://openalex.org/keywords/psychology |
| keywords[15].score | 0.11648741364479065 |
| keywords[15].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6642304/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6642304/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6642304/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100767171 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1715-3823 |
| authorships[0].author.display_name | Deliang Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[0].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[0].institutions[0].id | https://openalex.org/I41198531 |
| authorships[0].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deliang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[1].author.id | https://openalex.org/A5101985910 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-1242-1031 |
| authorships[1].author.display_name | Taotao Cheng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[1].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[1].institutions[0].id | https://openalex.org/I41198531 |
| authorships[1].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Taotao Cheng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[2].author.id | https://openalex.org/A5037514382 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Siyu Hong |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[2].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[2].institutions[0].id | https://openalex.org/I41198531 |
| authorships[2].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siyu Hong |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[3].author.id | https://openalex.org/A5083420537 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3024-4404 |
| authorships[3].author.display_name | Xilin Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[3].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[3].institutions[0].id | https://openalex.org/I41198531 |
| authorships[3].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wen Gao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[4].author.id | https://openalex.org/A5102762448 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3488-5225 |
| authorships[4].author.display_name | Zixuan Lu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[4].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[4].institutions[0].id | https://openalex.org/I41198531 |
| authorships[4].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zixuan Lu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[5].author.id | https://openalex.org/A5100355692 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7300-9215 |
| authorships[5].author.display_name | Yang Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I41198531 |
| authorships[5].affiliations[0].raw_affiliation_string | Nanjing University of Posts and Telecommunications |
| authorships[5].institutions[0].id | https://openalex.org/I41198531 |
| authorships[5].institutions[0].ror | https://ror.org/043bpky34 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I41198531 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Nanjing University of Posts and Telecommunications |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Liu Yang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Nanjing University of Posts and Telecommunications |
| authorships[6].author.id | https://openalex.org/A5079170636 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5740-4872 |
| authorships[6].author.display_name | Chen Ji |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[6].affiliations[0].raw_affiliation_string | Nanjing University |
| authorships[6].institutions[0].id | https://openalex.org/I881766915 |
| authorships[6].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Nanjing University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chen Ji |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nanjing University |
| authorships[7].author.id | https://openalex.org/A5101910670 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4491-6681 |
| authorships[7].author.display_name | Liang Cheng |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I881766915 |
| authorships[7].affiliations[0].raw_affiliation_string | Nanjing University |
| authorships[7].institutions[0].id | https://openalex.org/I881766915 |
| authorships[7].institutions[0].ror | https://ror.org/01rxvg760 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I881766915 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Nanjing University |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liang Cheng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Nanjing University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6642304/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Domain Adaptation for Cross-domain Remote Sensing Object Detection Via Joint Input and Feature Space |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10689 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9904999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Remote-Sensing Image Classification |
| related_works | https://openalex.org/W2997567050, https://openalex.org/W1483272040, https://openalex.org/W4283377908, https://openalex.org/W1996130883, https://openalex.org/W1526712007, https://openalex.org/W1533421371, https://openalex.org/W2748574964, https://openalex.org/W2003050223, https://openalex.org/W2091777911, https://openalex.org/W4394775207 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6642304/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6642304/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6642304/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6642304/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6642304/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6642304/v1 |
| publication_date | 2025-05-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2401246392, https://openalex.org/W4362465355, https://openalex.org/W3157967435, https://openalex.org/W4386755365, https://openalex.org/W6776985110, https://openalex.org/W6602162386, https://openalex.org/W6600358749, https://openalex.org/W6601939488, https://openalex.org/W3215643681, https://openalex.org/W6605656274, https://openalex.org/W6600002382, https://openalex.org/W6607436327, https://openalex.org/W6692041511, https://openalex.org/W2889151341, https://openalex.org/W4225123210, https://openalex.org/W4400822526 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 41, 73, 95, 126 |
| abstract_inverted_index.To | 68 |
| abstract_inverted_index.We | 121 |
| abstract_inverted_index.by | 43, 148 |
| abstract_inverted_index.in | 12, 65, 78, 103, 159 |
| abstract_inverted_index.of | 4 |
| abstract_inverted_index.on | 28, 125, 150 |
| abstract_inverted_index.to | 9, 33, 107 |
| abstract_inverted_index.we | 71, 85 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.and | 63, 81, 91, 109, 131, 157 |
| abstract_inverted_index.are | 31, 51 |
| abstract_inverted_index.but | 57 |
| abstract_inverted_index.can | 59 |
| abstract_inverted_index.for | 54 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.key | 61 |
| abstract_inverted_index.led | 8 |
| abstract_inverted_index.one | 29 |
| abstract_inverted_index.our | 123, 142 |
| abstract_inverted_index.the | 104 |
| abstract_inverted_index.both | 79 |
| abstract_inverted_index.data | 119 |
| abstract_inverted_index.deep | 5 |
| abstract_inverted_index.show | 140 |
| abstract_inverted_index.that | 75, 141 |
| abstract_inverted_index.they | 58 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.used | 53 |
| abstract_inverted_index.when | 25 |
| abstract_inverted_index.(UDA) | 39 |
| abstract_inverted_index.Color | 97 |
| abstract_inverted_index.Joint | 96 |
| abstract_inverted_index.Space | 98 |
| abstract_inverted_index.Then, | 94 |
| abstract_inverted_index.color | 111 |
| abstract_inverted_index.drops | 24 |
| abstract_inverted_index.gaps. | 46 |
| abstract_inverted_index.image | 87, 115 |
| abstract_inverted_index.input | 80 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.rapid | 2 |
| abstract_inverted_index.shift | 19 |
| abstract_inverted_index.space | 106 |
| abstract_inverted_index.this, | 70 |
| abstract_inverted_index.using | 134 |
| abstract_inverted_index.while | 117 |
| abstract_inverted_index.(GANs) | 50 |
| abstract_inverted_index.(JCST) | 100 |
| abstract_inverted_index.2–4% | 149 |
| abstract_inverted_index.First, | 84 |
| abstract_inverted_index.across | 89 |
| abstract_inverted_index.boosts | 144 |
| abstract_inverted_index.causes | 21 |
| abstract_inverted_index.domain | 18, 30, 37, 45, 152 |
| abstract_inverted_index.method | 74, 143 |
| abstract_inverted_index.models | 26 |
| abstract_inverted_index.module | 101 |
| abstract_inverted_index.object | 15, 136 |
| abstract_inverted_index.offers | 40 |
| abstract_inverted_index.remote | 13 |
| abstract_inverted_index.source | 66, 90, 151 |
| abstract_inverted_index.target | 92 |
| abstract_inverted_index.tasks. | 161 |
| abstract_inverted_index.Results | 139 |
| abstract_inverted_index.address | 69 |
| abstract_inverted_index.applied | 32 |
| abstract_inverted_index.average | 145 |
| abstract_inverted_index.crucial | 114 |
| abstract_inverted_index.dataset | 127 |
| abstract_inverted_index.degrade | 60 |
| abstract_inverted_index.details | 64, 116 |
| abstract_inverted_index.feature | 82, 105 |
| abstract_inverted_index.images, | 153 |
| abstract_inverted_index.images. | 67 |
| abstract_inverted_index.large-, | 129 |
| abstract_inverted_index.models. | 138 |
| abstract_inverted_index.notable | 22 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.sensing | 14 |
| abstract_inverted_index.spaces. | 83 |
| abstract_inverted_index.trained | 27 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 147 |
| abstract_inverted_index.aligning | 118 |
| abstract_inverted_index.approach | 124 |
| abstract_inverted_index.commonly | 52 |
| abstract_inverted_index.decouple | 108 |
| abstract_inverted_index.domains. | 93 |
| abstract_inverted_index.improved | 155 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.medium-, | 130 |
| abstract_inverted_index.multiple | 135 |
| abstract_inverted_index.networks | 49 |
| abstract_inverted_index.objects, | 133 |
| abstract_inverted_index.operates | 102 |
| abstract_inverted_index.purpose, | 56 |
| abstract_inverted_index.solution | 42 |
| abstract_inverted_index.textures | 62 |
| abstract_inverted_index.channels, | 112 |
| abstract_inverted_index.detection | 137, 146 |
| abstract_inverted_index.narrowing | 44 |
| abstract_inverted_index.recombine | 110 |
| abstract_inverted_index.validated | 122 |
| abstract_inverted_index.Generative | 47 |
| abstract_inverted_index.adaptation | 38 |
| abstract_inverted_index.containing | 128 |
| abstract_inverted_index.detection. | 16 |
| abstract_inverted_index.dimensions | 88 |
| abstract_inverted_index.integrates | 76 |
| abstract_inverted_index.preserving | 113 |
| abstract_inverted_index.real-world | 34 |
| abstract_inverted_index.robustness | 158 |
| abstract_inverted_index.scenarios. | 35 |
| abstract_inverted_index.advancement | 3 |
| abstract_inverted_index.adversarial | 48 |
| abstract_inverted_index.performance | 23 |
| abstract_inverted_index.significant | 10 |
| abstract_inverted_index.small-scale | 132 |
| abstract_inverted_index.standardize | 86 |
| abstract_inverted_index.Unsupervised | 36 |
| abstract_inverted_index.achievements | 11 |
| abstract_inverted_index.cross-domain | 160 |
| abstract_inverted_index.demonstrating | 154 |
| abstract_inverted_index.Transformation | 99 |
| abstract_inverted_index.distributions. | 120 |
| abstract_inverted_index.generalization | 156 |
| abstract_inverted_index.transformations | 77 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.26783938 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |