Unsupervised Framework for Multi-Task Restoration of Natural Images under Adverse Weather Conditions Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025
Adverse weather conditions can be an obstacle to recognizing animals in images captured by camera traps. Obviously, recognizing night images becomes more difficult when artifacts such as snow, rain, fog, or haze appear during shooting. Typically, the model is trained to remove any artifact, and very rarely two imposed meteorological artifacts, such as snow and rain. The diversity of deep neural models indicates interest to this problem, especially using unsupervised learning when there are no paired images – without and with artifact. The aim of this study is to develop a generalized framework for natural image restoration under adverse weather conditions based on mutual GAN training to simultaneously generate clean image and improve artifact mask. The core of image restoration depends on the physical features of a particular meteorological phenomenon and can be selected for different weather conditions. Analysis of images included in the dataset captured by camera traps in Ergaki National Park, Russia, shows that the most common artifacts are snow in winter and fog in summer and autumn. These artifacts were given special attention when building the framework. Additionally, the CSD, Rain100L, and O-Hazy datasets were utilized to evaluate the effectiveness of the proposed method under various adverse weather conditions. This comprehensive approach ensures that the framework is robust and adaptable to different types of artifacts encountered in real-world scenarios.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025
- https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdf
- OA Status
- diamond
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413977429
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413977429Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025Digital Object Identifier
- Title
-
Unsupervised Framework for Multi-Task Restoration of Natural Images under Adverse Weather ConditionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-04Full publication date if available
- Authors
-
Margarita N. Favorskaya, Dmitriy N. NatalenkoList of authors in order
- Landing page
-
https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025Publisher landing page
- PDF URL
-
https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdfDirect OA link when available
- Concepts
-
Task (project management), Adverse weather, Natural (archaeology), Computer science, Environmental science, Artificial intelligence, Meteorology, History, Engineering, Geography, Systems engineering, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413977429 |
|---|---|
| doi | https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| ids.doi | https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| ids.openalex | https://openalex.org/W4413977429 |
| fwci | 0.0 |
| type | article |
| title | Unsupervised Framework for Multi-Task Restoration of Natural Images under Adverse Weather Conditions |
| biblio.issue | |
| biblio.volume | XLVIII-2/W9-2025 |
| biblio.last_page | 77 |
| biblio.first_page | 71 |
| topics[0].id | https://openalex.org/T10688 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9700000286102295 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Signal Denoising Methods |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.954200029373169 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9247999787330627 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780451532 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6749568581581116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[0].display_name | Task (project management) |
| concepts[1].id | https://openalex.org/C2992147540 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6024250388145447 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1277161 |
| concepts[1].display_name | Adverse weather |
| concepts[2].id | https://openalex.org/C2776608160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5979417562484741 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q4785462 |
| concepts[2].display_name | Natural (archaeology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4549940228462219 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3836929500102997 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3285433053970337 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C153294291 |
| concepts[6].level | 1 |
| concepts[6].score | 0.23728930950164795 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[6].display_name | Meteorology |
| concepts[7].id | https://openalex.org/C95457728 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15754500031471252 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q309 |
| concepts[7].display_name | History |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.13459935784339905 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.13127726316452026 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C201995342 |
| concepts[10].level | 1 |
| concepts[10].score | 0.05201497673988342 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[10].display_name | Systems engineering |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/task |
| keywords[0].score | 0.6749568581581116 |
| keywords[0].display_name | Task (project management) |
| keywords[1].id | https://openalex.org/keywords/adverse-weather |
| keywords[1].score | 0.6024250388145447 |
| keywords[1].display_name | Adverse weather |
| keywords[2].id | https://openalex.org/keywords/natural |
| keywords[2].score | 0.5979417562484741 |
| keywords[2].display_name | Natural (archaeology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4549940228462219 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.3836929500102997 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.3285433053970337 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/meteorology |
| keywords[6].score | 0.23728930950164795 |
| keywords[6].display_name | Meteorology |
| keywords[7].id | https://openalex.org/keywords/history |
| keywords[7].score | 0.15754500031471252 |
| keywords[7].display_name | History |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.13459935784339905 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.13127726316452026 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/systems-engineering |
| keywords[10].score | 0.05201497673988342 |
| keywords[10].display_name | Systems engineering |
| language | en |
| locations[0].id | doi:10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737215817 |
| locations[0].source.issn | 1682-1750, 1682-1777, 2194-9034 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1682-1750 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| locations[0].source.host_organization | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_name | Copernicus Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313756 |
| locations[0].source.host_organization_lineage_names | Copernicus Publications |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| locations[0].landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| locations[1].id | pmh:oai:doaj.org/article:d4c1f0200e5d42839981fc6086d4a626 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLVIII-2-W9-2025, Pp 71-77 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d4c1f0200e5d42839981fc6086d4a626 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053328508 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2181-0454 |
| authorships[0].author.display_name | Margarita N. Favorskaya |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Margarita N. Favorskaya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5106388013 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-1712-6994 |
| authorships[1].author.display_name | Dmitriy N. Natalenko |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Dmitriy N. Natalenko |
| authorships[1].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Framework for Multi-Task Restoration of Natural Images under Adverse Weather Conditions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10688 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9700000286102295 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Signal Denoising Methods |
| related_works | https://openalex.org/W2730104357, https://openalex.org/W2353693354, https://openalex.org/W1933776184, https://openalex.org/W2166644210, https://openalex.org/W2484361849, https://openalex.org/W2761817071, https://openalex.org/W4283262748, https://openalex.org/W3153718224, https://openalex.org/W2950207376, https://openalex.org/W2807932134 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737215817 |
| best_oa_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1682-1750 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_name | Copernicus Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| best_oa_location.source.host_organization_lineage_names | Copernicus Publications |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| primary_location.id | doi:10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737215817 |
| primary_location.source.issn | 1682-1750, 1682-1777, 2194-9034 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1682-1750 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences |
| primary_location.source.host_organization | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_name | Copernicus Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313756 |
| primary_location.source.host_organization_lineage_names | Copernicus Publications |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://isprs-archives.copernicus.org/articles/XLVIII-2-W9-2025/71/2025/isprs-archives-XLVIII-2-W9-2025-71-2025.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
| primary_location.landing_page_url | https://doi.org/10.5194/isprs-archives-xlviii-2-w9-2025-71-2025 |
| publication_date | 2025-09-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 91, 127 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.as | 27, 53 |
| abstract_inverted_index.be | 5, 133 |
| abstract_inverted_index.by | 14, 147 |
| abstract_inverted_index.in | 11, 143, 150, 163, 167, 220 |
| abstract_inverted_index.is | 39, 88, 210 |
| abstract_inverted_index.no | 75 |
| abstract_inverted_index.of | 59, 85, 118, 126, 140, 194, 217 |
| abstract_inverted_index.on | 103, 122 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 8, 41, 65, 89, 107, 190, 214 |
| abstract_inverted_index.GAN | 105 |
| abstract_inverted_index.The | 57, 83, 116 |
| abstract_inverted_index.aim | 84 |
| abstract_inverted_index.and | 45, 55, 80, 112, 131, 165, 169, 185, 212 |
| abstract_inverted_index.any | 43 |
| abstract_inverted_index.are | 74, 161 |
| abstract_inverted_index.can | 4, 132 |
| abstract_inverted_index.fog | 166 |
| abstract_inverted_index.for | 94, 135 |
| abstract_inverted_index.the | 37, 123, 144, 157, 179, 182, 192, 195, 208 |
| abstract_inverted_index.two | 48 |
| abstract_inverted_index.– | 78 |
| abstract_inverted_index.CSD, | 183 |
| abstract_inverted_index.This | 203 |
| abstract_inverted_index.core | 117 |
| abstract_inverted_index.deep | 60 |
| abstract_inverted_index.fog, | 30 |
| abstract_inverted_index.haze | 32 |
| abstract_inverted_index.more | 22 |
| abstract_inverted_index.most | 158 |
| abstract_inverted_index.snow | 54, 162 |
| abstract_inverted_index.such | 26, 52 |
| abstract_inverted_index.that | 156, 207 |
| abstract_inverted_index.this | 66, 86 |
| abstract_inverted_index.very | 46 |
| abstract_inverted_index.were | 173, 188 |
| abstract_inverted_index.when | 24, 72, 177 |
| abstract_inverted_index.with | 81 |
| abstract_inverted_index.Park, | 153 |
| abstract_inverted_index.These | 171 |
| abstract_inverted_index.based | 102 |
| abstract_inverted_index.clean | 110 |
| abstract_inverted_index.given | 174 |
| abstract_inverted_index.image | 96, 111, 119 |
| abstract_inverted_index.mask. | 115 |
| abstract_inverted_index.model | 38 |
| abstract_inverted_index.night | 19 |
| abstract_inverted_index.rain, | 29 |
| abstract_inverted_index.rain. | 56 |
| abstract_inverted_index.shows | 155 |
| abstract_inverted_index.snow, | 28 |
| abstract_inverted_index.study | 87 |
| abstract_inverted_index.there | 73 |
| abstract_inverted_index.traps | 149 |
| abstract_inverted_index.types | 216 |
| abstract_inverted_index.under | 98, 198 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.Ergaki | 151 |
| abstract_inverted_index.O-Hazy | 186 |
| abstract_inverted_index.appear | 33 |
| abstract_inverted_index.camera | 15, 148 |
| abstract_inverted_index.common | 159 |
| abstract_inverted_index.during | 34 |
| abstract_inverted_index.images | 12, 20, 77, 141 |
| abstract_inverted_index.method | 197 |
| abstract_inverted_index.models | 62 |
| abstract_inverted_index.mutual | 104 |
| abstract_inverted_index.neural | 61 |
| abstract_inverted_index.paired | 76 |
| abstract_inverted_index.rarely | 47 |
| abstract_inverted_index.remove | 42 |
| abstract_inverted_index.robust | 211 |
| abstract_inverted_index.summer | 168 |
| abstract_inverted_index.traps. | 16 |
| abstract_inverted_index.winter | 164 |
| abstract_inverted_index.Adverse | 1 |
| abstract_inverted_index.Russia, | 154 |
| abstract_inverted_index.adverse | 99, 200 |
| abstract_inverted_index.animals | 10 |
| abstract_inverted_index.autumn. | 170 |
| abstract_inverted_index.becomes | 21 |
| abstract_inverted_index.dataset | 145 |
| abstract_inverted_index.depends | 121 |
| abstract_inverted_index.develop | 90 |
| abstract_inverted_index.ensures | 206 |
| abstract_inverted_index.imposed | 49 |
| abstract_inverted_index.improve | 113 |
| abstract_inverted_index.natural | 95 |
| abstract_inverted_index.special | 175 |
| abstract_inverted_index.trained | 40 |
| abstract_inverted_index.various | 199 |
| abstract_inverted_index.weather | 2, 100, 137, 201 |
| abstract_inverted_index.without | 79 |
| abstract_inverted_index.Analysis | 139 |
| abstract_inverted_index.National | 152 |
| abstract_inverted_index.approach | 205 |
| abstract_inverted_index.artifact | 114 |
| abstract_inverted_index.building | 178 |
| abstract_inverted_index.captured | 13, 146 |
| abstract_inverted_index.datasets | 187 |
| abstract_inverted_index.evaluate | 191 |
| abstract_inverted_index.features | 125 |
| abstract_inverted_index.generate | 109 |
| abstract_inverted_index.included | 142 |
| abstract_inverted_index.interest | 64 |
| abstract_inverted_index.learning | 71 |
| abstract_inverted_index.obstacle | 7 |
| abstract_inverted_index.physical | 124 |
| abstract_inverted_index.problem, | 67 |
| abstract_inverted_index.proposed | 196 |
| abstract_inverted_index.selected | 134 |
| abstract_inverted_index.training | 106 |
| abstract_inverted_index.utilized | 189 |
| abstract_inverted_index.Abstract. | 0 |
| abstract_inverted_index.Rain100L, | 184 |
| abstract_inverted_index.adaptable | 213 |
| abstract_inverted_index.artifact, | 44 |
| abstract_inverted_index.artifact. | 82 |
| abstract_inverted_index.artifacts | 25, 160, 172, 218 |
| abstract_inverted_index.attention | 176 |
| abstract_inverted_index.different | 136, 215 |
| abstract_inverted_index.difficult | 23 |
| abstract_inverted_index.diversity | 58 |
| abstract_inverted_index.framework | 93, 209 |
| abstract_inverted_index.indicates | 63 |
| abstract_inverted_index.shooting. | 35 |
| abstract_inverted_index.Obviously, | 17 |
| abstract_inverted_index.Typically, | 36 |
| abstract_inverted_index.artifacts, | 51 |
| abstract_inverted_index.conditions | 3, 101 |
| abstract_inverted_index.especially | 68 |
| abstract_inverted_index.framework. | 180 |
| abstract_inverted_index.particular | 128 |
| abstract_inverted_index.phenomenon | 130 |
| abstract_inverted_index.real-world | 221 |
| abstract_inverted_index.scenarios. | 222 |
| abstract_inverted_index.conditions. | 138, 202 |
| abstract_inverted_index.encountered | 219 |
| abstract_inverted_index.generalized | 92 |
| abstract_inverted_index.recognizing | 9, 18 |
| abstract_inverted_index.restoration | 97, 120 |
| abstract_inverted_index.unsupervised | 70 |
| abstract_inverted_index.Additionally, | 181 |
| abstract_inverted_index.comprehensive | 204 |
| abstract_inverted_index.effectiveness | 193 |
| abstract_inverted_index.meteorological | 50, 129 |
| abstract_inverted_index.simultaneously | 108 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.41590562 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |