UNSUPERVISED HARMONIZATION OF BRAIN MRI USING 3D CYCLE GANS AND ITS EFFECT ON BRAIN AGE PREDICTION Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.11.15.516349
Deep learning methods trained on brain MRI data from one scanner or imaging protocol can fail catastrophically when tested on data from other sites or protocols - a problem known as domain shift . To address this, here we propose a domain adaptation method that trains a 3D CycleGAN (cycle-consistent generative adversarial network) to harmonize brain MRI data from 5 diverse sources (ADNI, WHIMS, OASIS, AIBL, and UK Biobank; total N=4,941 MRIs, age range: 46-96 years). The approach uses 2 generators and 2 discriminators to generate an image harmonized to a specific target dataset given an image from the source domain distribution and vice versa . We train the CycleGAN to jointly optimize an adversarial loss and cyclic consistency. We use a patch-based discriminator and impose identity loss to further regularize model training. To test the benefit of the harmonization, we show that brain age estimation - a common benchmarking task - is more accurate in GAN-harmonized versus raw data. t -SNE maps show the improved distributional overlap of the harmonized data in the latent space.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.11.15.516349
- https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4309258633
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4309258633Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.11.15.516349Digital Object Identifier
- Title
-
UNSUPERVISED HARMONIZATION OF BRAIN MRI USING 3D CYCLE GANS AND ITS EFFECT ON BRAIN AGE PREDICTIONWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-15Full publication date if available
- Authors
-
Dheeraj Komandur, Umang Gupta, Tamoghna Chattopadhyay, Nikhil J. Dhinagar, Sophia I. Thomopoulos, Jiu‐Chiuan Chen, Dan Beavers, Greg Ver Steeg, Paul M. ThompsonList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.11.15.516349Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdfDirect OA link when available
- Concepts
-
Computer science, Discriminator, Artificial intelligence, Raw data, Consistency (knowledge bases), Domain (mathematical analysis), Deep learning, Benchmarking, Pattern recognition (psychology), Harmonization, Range (aeronautics), Machine learning, Data mining, Mathematics, Physics, Materials science, Composite material, Business, Telecommunications, Mathematical analysis, Marketing, Programming language, Acoustics, DetectorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4309258633 |
|---|---|
| doi | https://doi.org/10.1101/2022.11.15.516349 |
| ids.doi | https://doi.org/10.1101/2022.11.15.516349 |
| ids.openalex | https://openalex.org/W4309258633 |
| fwci | 0.1237918 |
| type | preprint |
| title | UNSUPERVISED HARMONIZATION OF BRAIN MRI USING 3D CYCLE GANS AND ITS EFFECT ON BRAIN AGE PREDICTION |
| awards[0].id | https://openalex.org/G5331993534 |
| awards[0].funder_id | https://openalex.org/F4320334626 |
| awards[0].display_name | |
| awards[0].funder_award_id | MC_PC_17228 |
| awards[0].funder_display_name | Medical Research Council |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10775 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9763000011444092 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T13702 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9722999930381775 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning in Healthcare |
| funders[0].id | https://openalex.org/F4320334626 |
| funders[0].ror | https://ror.org/03x94j517 |
| funders[0].display_name | Medical Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7726608514785767 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779803651 |
| concepts[1].level | 3 |
| concepts[1].score | 0.761067271232605 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5282088 |
| concepts[1].display_name | Discriminator |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5879026651382446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C132964779 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5587039589881897 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[3].display_name | Raw data |
| concepts[4].id | https://openalex.org/C2776436953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5448044538497925 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[4].display_name | Consistency (knowledge bases) |
| concepts[5].id | https://openalex.org/C36503486 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5410834550857544 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[5].display_name | Domain (mathematical analysis) |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5365647673606873 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C86251818 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4361097812652588 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[7].display_name | Benchmarking |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4288973808288574 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C2779962950 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41987815499305725 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q5659376 |
| concepts[9].display_name | Harmonization |
| concepts[10].id | https://openalex.org/C204323151 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4182378649711609 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[10].display_name | Range (aeronautics) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4114096760749817 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C124101348 |
| concepts[12].level | 1 |
| concepts[12].score | 0.38312435150146484 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[12].display_name | Data mining |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.09199923276901245 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C121332964 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[14].display_name | Physics |
| concepts[15].id | https://openalex.org/C192562407 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[15].display_name | Materials science |
| concepts[16].id | https://openalex.org/C159985019 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[16].display_name | Composite material |
| concepts[17].id | https://openalex.org/C144133560 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[17].display_name | Business |
| concepts[18].id | https://openalex.org/C76155785 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[18].display_name | Telecommunications |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| concepts[20].id | https://openalex.org/C162853370 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[20].display_name | Marketing |
| concepts[21].id | https://openalex.org/C199360897 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[21].display_name | Programming language |
| concepts[22].id | https://openalex.org/C24890656 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[22].display_name | Acoustics |
| concepts[23].id | https://openalex.org/C94915269 |
| concepts[23].level | 2 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[23].display_name | Detector |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7726608514785767 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/discriminator |
| keywords[1].score | 0.761067271232605 |
| keywords[1].display_name | Discriminator |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5879026651382446 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/raw-data |
| keywords[3].score | 0.5587039589881897 |
| keywords[3].display_name | Raw data |
| keywords[4].id | https://openalex.org/keywords/consistency |
| keywords[4].score | 0.5448044538497925 |
| keywords[4].display_name | Consistency (knowledge bases) |
| keywords[5].id | https://openalex.org/keywords/domain |
| keywords[5].score | 0.5410834550857544 |
| keywords[5].display_name | Domain (mathematical analysis) |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5365647673606873 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/benchmarking |
| keywords[7].score | 0.4361097812652588 |
| keywords[7].display_name | Benchmarking |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4288973808288574 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/harmonization |
| keywords[9].score | 0.41987815499305725 |
| keywords[9].display_name | Harmonization |
| keywords[10].id | https://openalex.org/keywords/range |
| keywords[10].score | 0.4182378649711609 |
| keywords[10].display_name | Range (aeronautics) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4114096760749817 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/data-mining |
| keywords[12].score | 0.38312435150146484 |
| keywords[12].display_name | Data mining |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.09199923276901245 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1101/2022.11.15.516349 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.11.15.516349 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5016297505 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Dheeraj Komandur |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[0].affiliations[0].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1174212 |
| authorships[0].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern California |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dheeraj Komandur |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[1].author.id | https://openalex.org/A5081316458 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1263-8813 |
| authorships[1].author.display_name | Umang Gupta |
| authorships[1].countries | US |
| authorships[1].affiliations[0].raw_affiliation_string | USC Information Sciences Institute, Marina del Rey, CA, USA |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1174212 |
| authorships[1].affiliations[1].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I1174212 |
| authorships[1].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern California |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Umang Gupta |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA, USC Information Sciences Institute, Marina del Rey, CA, USA |
| authorships[2].author.id | https://openalex.org/A5074576951 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3146-6845 |
| authorships[2].author.display_name | Tamoghna Chattopadhyay |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[2].affiliations[0].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I1174212 |
| authorships[2].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Southern California |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tamoghna Chattopadhyay |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[3].author.id | https://openalex.org/A5089189717 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2424-4854 |
| authorships[3].author.display_name | Nikhil J. Dhinagar |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[3].affiliations[0].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I1174212 |
| authorships[3].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Southern California |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Nikhil J. Dhinagar |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[4].author.id | https://openalex.org/A5017365268 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0046-4070 |
| authorships[4].author.display_name | Sophia I. Thomopoulos |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[4].affiliations[0].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1174212 |
| authorships[4].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Southern California |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sophia I. Thomopoulos |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[5].author.id | https://openalex.org/A5018041284 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Jiu‐Chiuan Chen |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[5].affiliations[0].raw_affiliation_string | Depts. Of Population and Public Health Science and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1174212 |
| authorships[5].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Southern California |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiu-Chiuan Chen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Depts. Of Population and Public Health Science and Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA |
| authorships[6].author.id | https://openalex.org/A5103699639 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Dan Beavers |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47251452 |
| authorships[6].affiliations[0].raw_affiliation_string | Dept. of Statistical Sciences, Wake Forest University, NC, USA |
| authorships[6].institutions[0].id | https://openalex.org/I47251452 |
| authorships[6].institutions[0].ror | https://ror.org/0207ad724 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47251452 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Wake Forest University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Dan Beavers |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Dept. of Statistical Sciences, Wake Forest University, NC, USA |
| authorships[7].author.id | https://openalex.org/A5075920466 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0793-141X |
| authorships[7].author.display_name | Greg Ver Steeg |
| authorships[7].affiliations[0].raw_affiliation_string | USC Information Sciences Institute, Marina del Rey, CA, USA |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Greg ver Steeg |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | USC Information Sciences Institute, Marina del Rey, CA, USA |
| authorships[8].author.id | https://openalex.org/A5100606557 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-4720-8867 |
| authorships[8].author.display_name | Paul M. Thompson |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[8].affiliations[0].raw_affiliation_string | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| authorships[8].institutions[0].id | https://openalex.org/I1174212 |
| authorships[8].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Southern California |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Paul M. Thompson |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | UNSUPERVISED HARMONIZATION OF BRAIN MRI USING 3D CYCLE GANS AND ITS EFFECT ON BRAIN AGE PREDICTION |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10775 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Generative Adversarial Networks and Image Synthesis |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W4293202849, https://openalex.org/W1980965563, https://openalex.org/W1490753184, https://openalex.org/W2946579579, https://openalex.org/W3145231964, https://openalex.org/W2528451523 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.11.15.516349 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.11.15.516349 |
| primary_location.id | doi:10.1101/2022.11.15.516349 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2022/11/15/2022.11.15.516349.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.11.15.516349 |
| publication_date | 2022-11-15 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3015083995, https://openalex.org/W3115055674, https://openalex.org/W4281683654, https://openalex.org/W3204364267, https://openalex.org/W3184792041, https://openalex.org/W2961602927, https://openalex.org/W3173519548, https://openalex.org/W2082704080, https://openalex.org/W2560584411, https://openalex.org/W2154114558, https://openalex.org/W2150534249, https://openalex.org/W2009733979, https://openalex.org/W3105274082, https://openalex.org/W2962793481, https://openalex.org/W2194775991, https://openalex.org/W2963073614, https://openalex.org/W2339754110, https://openalex.org/W2963470893, https://openalex.org/W6730095352, https://openalex.org/W6631190155 |
| referenced_works_count | 20 |
| abstract_inverted_index.- | 27, 147, 152 |
| abstract_inverted_index.. | 34, 106 |
| abstract_inverted_index.2 | 80, 83 |
| abstract_inverted_index.5 | 60 |
| abstract_inverted_index.a | 28, 41, 47, 91, 122, 148 |
| abstract_inverted_index.t | 161 |
| abstract_inverted_index.3D | 48 |
| abstract_inverted_index.To | 35, 134 |
| abstract_inverted_index.UK | 68 |
| abstract_inverted_index.We | 107, 120 |
| abstract_inverted_index.an | 87, 96, 114 |
| abstract_inverted_index.as | 31 |
| abstract_inverted_index.in | 156, 173 |
| abstract_inverted_index.is | 153 |
| abstract_inverted_index.of | 138, 169 |
| abstract_inverted_index.on | 5, 20 |
| abstract_inverted_index.or | 12, 25 |
| abstract_inverted_index.to | 54, 85, 90, 111, 129 |
| abstract_inverted_index.we | 39, 141 |
| abstract_inverted_index.MRI | 7, 57 |
| abstract_inverted_index.The | 77 |
| abstract_inverted_index.age | 73, 145 |
| abstract_inverted_index.and | 67, 82, 103, 117, 125 |
| abstract_inverted_index.can | 15 |
| abstract_inverted_index.one | 10 |
| abstract_inverted_index.raw | 159 |
| abstract_inverted_index.the | 99, 109, 136, 139, 165, 170, 174 |
| abstract_inverted_index.use | 121 |
| abstract_inverted_index.-SNE | 162 |
| abstract_inverted_index.Deep | 1 |
| abstract_inverted_index.data | 8, 21, 58, 172 |
| abstract_inverted_index.fail | 16 |
| abstract_inverted_index.from | 9, 22, 59, 98 |
| abstract_inverted_index.here | 38 |
| abstract_inverted_index.loss | 116, 128 |
| abstract_inverted_index.maps | 163 |
| abstract_inverted_index.more | 154 |
| abstract_inverted_index.show | 142, 164 |
| abstract_inverted_index.task | 151 |
| abstract_inverted_index.test | 135 |
| abstract_inverted_index.that | 45, 143 |
| abstract_inverted_index.uses | 79 |
| abstract_inverted_index.vice | 104 |
| abstract_inverted_index.when | 18 |
| abstract_inverted_index.46-96 | 75 |
| abstract_inverted_index.AIBL, | 66 |
| abstract_inverted_index.MRIs, | 72 |
| abstract_inverted_index.brain | 6, 56, 144 |
| abstract_inverted_index.data. | 160 |
| abstract_inverted_index.given | 95 |
| abstract_inverted_index.image | 88, 97 |
| abstract_inverted_index.known | 30 |
| abstract_inverted_index.model | 132 |
| abstract_inverted_index.other | 23 |
| abstract_inverted_index.shift | 33 |
| abstract_inverted_index.sites | 24 |
| abstract_inverted_index.this, | 37 |
| abstract_inverted_index.total | 70 |
| abstract_inverted_index.train | 108 |
| abstract_inverted_index.versa | 105 |
| abstract_inverted_index.(ADNI, | 63 |
| abstract_inverted_index.OASIS, | 65 |
| abstract_inverted_index.WHIMS, | 64 |
| abstract_inverted_index.common | 149 |
| abstract_inverted_index.cyclic | 118 |
| abstract_inverted_index.domain | 32, 42, 101 |
| abstract_inverted_index.impose | 126 |
| abstract_inverted_index.latent | 175 |
| abstract_inverted_index.method | 44 |
| abstract_inverted_index.range: | 74 |
| abstract_inverted_index.source | 100 |
| abstract_inverted_index.space. | 176 |
| abstract_inverted_index.target | 93 |
| abstract_inverted_index.tested | 19 |
| abstract_inverted_index.trains | 46 |
| abstract_inverted_index.versus | 158 |
| abstract_inverted_index.N=4,941 | 71 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.benefit | 137 |
| abstract_inverted_index.dataset | 94 |
| abstract_inverted_index.diverse | 61 |
| abstract_inverted_index.further | 130 |
| abstract_inverted_index.imaging | 13 |
| abstract_inverted_index.jointly | 112 |
| abstract_inverted_index.methods | 3 |
| abstract_inverted_index.overlap | 168 |
| abstract_inverted_index.problem | 29 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.scanner | 11 |
| abstract_inverted_index.sources | 62 |
| abstract_inverted_index.trained | 4 |
| abstract_inverted_index.years). | 76 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.Biobank; | 69 |
| abstract_inverted_index.CycleGAN | 49, 110 |
| abstract_inverted_index.accurate | 155 |
| abstract_inverted_index.approach | 78 |
| abstract_inverted_index.generate | 86 |
| abstract_inverted_index.identity | 127 |
| abstract_inverted_index.improved | 166 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.network) | 53 |
| abstract_inverted_index.optimize | 113 |
| abstract_inverted_index.protocol | 14 |
| abstract_inverted_index.specific | 92 |
| abstract_inverted_index.harmonize | 55 |
| abstract_inverted_index.protocols | 26 |
| abstract_inverted_index.training. | 133 |
| abstract_inverted_index.adaptation | 43 |
| abstract_inverted_index.estimation | 146 |
| abstract_inverted_index.generative | 51 |
| abstract_inverted_index.generators | 81 |
| abstract_inverted_index.harmonized | 89, 171 |
| abstract_inverted_index.regularize | 131 |
| abstract_inverted_index.adversarial | 52, 115 |
| abstract_inverted_index.patch-based | 123 |
| abstract_inverted_index.benchmarking | 150 |
| abstract_inverted_index.consistency. | 119 |
| abstract_inverted_index.distribution | 102 |
| abstract_inverted_index.discriminator | 124 |
| abstract_inverted_index.GAN-harmonized | 157 |
| abstract_inverted_index.discriminators | 84 |
| abstract_inverted_index.distributional | 167 |
| abstract_inverted_index.harmonization, | 140 |
| abstract_inverted_index.catastrophically | 17 |
| abstract_inverted_index.(cycle-consistent | 50 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5016297505 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| corresponding_institution_ids | https://openalex.org/I1174212 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.41924585 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |