Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22041383
This paper proposes a novel unsupervised learning framework for depth recovery and camera ego-motion estimation from monocular video. The framework exploits the optical flow (OF) property to jointly train the depth and the ego-motion models. Unlike the existing unsupervised methods, our method extracts the features from the optical flow rather than from the raw RGB images, thereby enhancing unsupervised learning. In addition, we exploit the forward-backward consistency check of the optical flow to generate a mask of the invalid region in the image, and accordingly, eliminate the outlier regions such as occlusion regions and moving objects for the learning. Furthermore, in addition to using view synthesis as a supervised signal, we impose additional loss functions, including optical flow consistency loss and depth consistency loss, as additional supervision signals on the valid image region to further enhance the training of the models. Substantial experiments on multiple benchmark datasets demonstrate that our method outperforms other unsupervised methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22041383
- https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110
- OA Status
- gold
- Cited By
- 7
- References
- 32
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4213213810
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4213213810Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22041383Digital Object Identifier
- Title
-
Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple ConstraintsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-11Full publication date if available
- Authors
-
Baigan Zhao, Yingping Huang, Wenyan Ci, Xing HuList of authors in order
- Landing page
-
https://doi.org/10.3390/s22041383Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110Direct OA link when available
- Concepts
-
Optical flow, Artificial intelligence, Computer science, Monocular, Unsupervised learning, Consistency (knowledge bases), Benchmark (surveying), Computer vision, Exploit, Outlier, Supervised learning, Pattern recognition (psychology), Image (mathematics), Artificial neural network, Geography, Computer security, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 4, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
32Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4213213810 |
|---|---|
| doi | https://doi.org/10.3390/s22041383 |
| ids.doi | https://doi.org/10.3390/s22041383 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35214285 |
| ids.openalex | https://openalex.org/W4213213810 |
| fwci | 0.86654261 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D004532 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Ego |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D009038 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Motion |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D057849 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Optic Flow |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000069558 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Unsupervised Machine Learning |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D004532 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Ego |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D009038 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Motion |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D057849 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Optic Flow |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000069558 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Unsupervised Machine Learning |
| type | article |
| title | Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints |
| biblio.issue | 4 |
| biblio.volume | 22 |
| biblio.last_page | 1383 |
| biblio.first_page | 1383 |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10638 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Optical measurement and interference techniques |
| topics[2].id | https://openalex.org/T13114 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Image Processing Techniques and Applications |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C155542232 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8476035594940186 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q736111 |
| concepts[0].display_name | Optical flow |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.743039608001709 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7052157521247864 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C65909025 |
| concepts[3].level | 2 |
| concepts[3].score | 0.668349027633667 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1945033 |
| concepts[3].display_name | Monocular |
| concepts[4].id | https://openalex.org/C8038995 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6559242606163025 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1152135 |
| concepts[4].display_name | Unsupervised learning |
| concepts[5].id | https://openalex.org/C2776436953 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6557905673980713 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[5].display_name | Consistency (knowledge bases) |
| concepts[6].id | https://openalex.org/C185798385 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6021938323974609 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[6].display_name | Benchmark (surveying) |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5750141143798828 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C165696696 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47557559609413147 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[8].display_name | Exploit |
| concepts[9].id | https://openalex.org/C79337645 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45499712228775024 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[9].display_name | Outlier |
| concepts[10].id | https://openalex.org/C136389625 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44642141461372375 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[10].display_name | Supervised learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41599223017692566 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2914966344833374 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C50644808 |
| concepts[13].level | 2 |
| concepts[13].score | 0.16904374957084656 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[13].display_name | Artificial neural network |
| concepts[14].id | https://openalex.org/C205649164 |
| concepts[14].level | 0 |
| concepts[14].score | 0.07030576467514038 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[14].display_name | Geography |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C13280743 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[16].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/optical-flow |
| keywords[0].score | 0.8476035594940186 |
| keywords[0].display_name | Optical flow |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.743039608001709 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7052157521247864 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/monocular |
| keywords[3].score | 0.668349027633667 |
| keywords[3].display_name | Monocular |
| keywords[4].id | https://openalex.org/keywords/unsupervised-learning |
| keywords[4].score | 0.6559242606163025 |
| keywords[4].display_name | Unsupervised learning |
| keywords[5].id | https://openalex.org/keywords/consistency |
| keywords[5].score | 0.6557905673980713 |
| keywords[5].display_name | Consistency (knowledge bases) |
| keywords[6].id | https://openalex.org/keywords/benchmark |
| keywords[6].score | 0.6021938323974609 |
| keywords[6].display_name | Benchmark (surveying) |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.5750141143798828 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/exploit |
| keywords[8].score | 0.47557559609413147 |
| keywords[8].display_name | Exploit |
| keywords[9].id | https://openalex.org/keywords/outlier |
| keywords[9].score | 0.45499712228775024 |
| keywords[9].display_name | Outlier |
| keywords[10].id | https://openalex.org/keywords/supervised-learning |
| keywords[10].score | 0.44642141461372375 |
| keywords[10].display_name | Supervised learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.41599223017692566 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.2914966344833374 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[13].score | 0.16904374957084656 |
| keywords[13].display_name | Artificial neural network |
| keywords[14].id | https://openalex.org/keywords/geography |
| keywords[14].score | 0.07030576467514038 |
| keywords[14].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/s22041383 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22041383 |
| locations[1].id | pmid:35214285 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35214285 |
| locations[2].id | pmh:oai:doaj.org/article:87ca35686baf40349a9916a4ec57a05f |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 22, Iss 4, p 1383 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/87ca35686baf40349a9916a4ec57a05f |
| locations[3].id | pmh:oai:mdpi.com:/1424-8220/22/4/1383/ |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400947 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | True |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | MDPI (MDPI AG) |
| locations[3].source.host_organization | https://openalex.org/I4210097602 |
| locations[3].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[3].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors; Volume 22; Issue 4; Pages: 1383 |
| locations[3].landing_page_url | https://dx.doi.org/10.3390/s22041383 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:8963015 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors (Basel) |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8963015 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5005899076 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2569-6908 |
| authorships[0].author.display_name | Baigan Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| authorships[0].institutions[0].id | https://openalex.org/I148128674 |
| authorships[0].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baigan Zhao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| authorships[1].author.id | https://openalex.org/A5101492678 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5861-2304 |
| authorships[1].author.display_name | Yingping Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| authorships[1].institutions[0].id | https://openalex.org/I148128674 |
| authorships[1].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yingping Huang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| authorships[2].author.id | https://openalex.org/A5086816563 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0248-637X |
| authorships[2].author.display_name | Wenyan Ci |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I3018263800 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Engineering, Huzhou University, Huzhou 313000, China |
| authorships[2].institutions[0].id | https://openalex.org/I3018263800 |
| authorships[2].institutions[0].ror | https://ror.org/04mvpxy20 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I3018263800 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wenyan Ci |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Engineering, Huzhou University, Huzhou 313000, China |
| authorships[3].author.id | https://openalex.org/A5082604341 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1930-0372 |
| authorships[3].author.display_name | Xing Hu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I148128674 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| authorships[3].institutions[0].id | https://openalex.org/I148128674 |
| authorships[3].institutions[0].ror | https://ror.org/00ay9v204 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I148128674 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | University of Shanghai for Science and Technology |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Xing Hu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Optical-Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Learning of Monocular Depth and Ego-Motion with Optical Flow Features and Multiple Constraints |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W4281553171, https://openalex.org/W2992415220, https://openalex.org/W2156208915, https://openalex.org/W3198126099, https://openalex.org/W1970467378, https://openalex.org/W2115944530, https://openalex.org/W2132451322, https://openalex.org/W2101286949, https://openalex.org/W119187218, https://openalex.org/W4280609810 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22041383 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22041383 |
| primary_location.id | doi:10.3390/s22041383 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/4/1383/pdf?version=1644571110 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22041383 |
| publication_date | 2022-02-11 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3112339945, https://openalex.org/W1612997784, https://openalex.org/W2532294591, https://openalex.org/W3081814165, https://openalex.org/W2171740948, https://openalex.org/W1803059841, https://openalex.org/W2950304854, https://openalex.org/W2891048446, https://openalex.org/W2962804601, https://openalex.org/W2598706937, https://openalex.org/W2964019655, https://openalex.org/W2965100203, https://openalex.org/W2755457237, https://openalex.org/W3125174950, https://openalex.org/W2963384393, https://openalex.org/W2609883120, https://openalex.org/W2962816904, https://openalex.org/W2963906250, https://openalex.org/W2963549785, https://openalex.org/W3197931399, https://openalex.org/W2963583471, https://openalex.org/W2954307577, https://openalex.org/W2964968086, https://openalex.org/W3013402579, https://openalex.org/W2155302366, https://openalex.org/W1530781137, https://openalex.org/W2150066425, https://openalex.org/W2340897893, https://openalex.org/W2110917409, https://openalex.org/W2520707372, https://openalex.org/W3100847195, https://openalex.org/W3099698729 |
| referenced_works_count | 32 |
| abstract_inverted_index.a | 3, 74, 107 |
| abstract_inverted_index.In | 60 |
| abstract_inverted_index.as | 90, 106, 124 |
| abstract_inverted_index.in | 80, 100 |
| abstract_inverted_index.of | 68, 76, 138 |
| abstract_inverted_index.on | 128, 143 |
| abstract_inverted_index.to | 26, 72, 102, 133 |
| abstract_inverted_index.we | 62, 110 |
| abstract_inverted_index.RGB | 54 |
| abstract_inverted_index.The | 18 |
| abstract_inverted_index.and | 11, 31, 83, 93, 120 |
| abstract_inverted_index.for | 8, 96 |
| abstract_inverted_index.our | 40, 149 |
| abstract_inverted_index.raw | 53 |
| abstract_inverted_index.the | 21, 29, 32, 36, 43, 46, 52, 64, 69, 77, 81, 86, 97, 129, 136, 139 |
| abstract_inverted_index.(OF) | 24 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.flow | 23, 48, 71, 117 |
| abstract_inverted_index.from | 15, 45, 51 |
| abstract_inverted_index.loss | 113, 119 |
| abstract_inverted_index.mask | 75 |
| abstract_inverted_index.such | 89 |
| abstract_inverted_index.than | 50 |
| abstract_inverted_index.that | 148 |
| abstract_inverted_index.view | 104 |
| abstract_inverted_index.check | 67 |
| abstract_inverted_index.depth | 9, 30, 121 |
| abstract_inverted_index.image | 131 |
| abstract_inverted_index.loss, | 123 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.other | 152 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.train | 28 |
| abstract_inverted_index.using | 103 |
| abstract_inverted_index.valid | 130 |
| abstract_inverted_index.Unlike | 35 |
| abstract_inverted_index.camera | 12 |
| abstract_inverted_index.image, | 82 |
| abstract_inverted_index.impose | 111 |
| abstract_inverted_index.method | 41, 150 |
| abstract_inverted_index.moving | 94 |
| abstract_inverted_index.rather | 49 |
| abstract_inverted_index.region | 79, 132 |
| abstract_inverted_index.video. | 17 |
| abstract_inverted_index.enhance | 135 |
| abstract_inverted_index.exploit | 63 |
| abstract_inverted_index.further | 134 |
| abstract_inverted_index.images, | 55 |
| abstract_inverted_index.invalid | 78 |
| abstract_inverted_index.jointly | 27 |
| abstract_inverted_index.models. | 34, 140 |
| abstract_inverted_index.objects | 95 |
| abstract_inverted_index.optical | 22, 47, 70, 116 |
| abstract_inverted_index.outlier | 87 |
| abstract_inverted_index.regions | 88, 92 |
| abstract_inverted_index.signal, | 109 |
| abstract_inverted_index.signals | 127 |
| abstract_inverted_index.thereby | 56 |
| abstract_inverted_index.addition | 101 |
| abstract_inverted_index.datasets | 146 |
| abstract_inverted_index.existing | 37 |
| abstract_inverted_index.exploits | 20 |
| abstract_inverted_index.extracts | 42 |
| abstract_inverted_index.features | 44 |
| abstract_inverted_index.generate | 73 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.methods, | 39 |
| abstract_inverted_index.methods. | 154 |
| abstract_inverted_index.multiple | 144 |
| abstract_inverted_index.property | 25 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.recovery | 10 |
| abstract_inverted_index.training | 137 |
| abstract_inverted_index.addition, | 61 |
| abstract_inverted_index.benchmark | 145 |
| abstract_inverted_index.eliminate | 85 |
| abstract_inverted_index.enhancing | 57 |
| abstract_inverted_index.framework | 7, 19 |
| abstract_inverted_index.including | 115 |
| abstract_inverted_index.learning. | 59, 98 |
| abstract_inverted_index.monocular | 16 |
| abstract_inverted_index.occlusion | 91 |
| abstract_inverted_index.synthesis | 105 |
| abstract_inverted_index.additional | 112, 125 |
| abstract_inverted_index.ego-motion | 13, 33 |
| abstract_inverted_index.estimation | 14 |
| abstract_inverted_index.functions, | 114 |
| abstract_inverted_index.supervised | 108 |
| abstract_inverted_index.Substantial | 141 |
| abstract_inverted_index.consistency | 66, 118, 122 |
| abstract_inverted_index.demonstrate | 147 |
| abstract_inverted_index.experiments | 142 |
| abstract_inverted_index.outperforms | 151 |
| abstract_inverted_index.supervision | 126 |
| abstract_inverted_index.Furthermore, | 99 |
| abstract_inverted_index.accordingly, | 84 |
| abstract_inverted_index.unsupervised | 5, 38, 58, 153 |
| abstract_inverted_index.forward-backward | 65 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5101492678 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I148128674 |
| citation_normalized_percentile.value | 0.71182197 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |