Unsupervised machine learning algorithm for face morphing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1063/5.0154756
Face morphing is the process of morphing or merging the face of the subject image with the face of another test image. Techniques of face morphing have been utilized in quite diverse fields, mostly in the entertainment industry to replace the face of an actor with a resembling actor to complete movies in absence of the actor. Typical face morphing implemented in commercial cinemas are a result of image morphing that is implemented on still images. Face morphing is a complex procedure that encompasses extracting the face marking, followed by the formation of a mesh of triangles that would be further used for morphing the face of a test image to the subject Image. Though there are many different programs with the ability to morph faces the proceeds to select a suitable candidate still largely is done via manual procedures or even if automated, the process is rarely integrated with the face morphing program. For the morphing results to be seamless it should be ensured that there is very less difference between the original image and the morphed image that is, the resemblance between the two images should be very high, therefore there is a brief description in the report about "what is the process of implementing morphing and how such resemblance will be achieved. Our research work aims to design and implement a similar face morphing program that has a model integrated into it for selecting the best suitable candidate for face morphing. Using python programming and concepts of unsupervised learning we aim to create will have the ability to calculate the resemblance between the faces of the subject and various candidates and decide for itself which among different candidates is best suitable for face morphing. Since it finds the most resembling candidate for face morphing, hence the name Doppelgänger.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1063/5.0154756
- https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdf
- OA Status
- bronze
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4380839162
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4380839162Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1063/5.0154756Digital Object Identifier
- Title
-
Unsupervised machine learning algorithm for face morphingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-01-01Full publication date if available
- Authors
-
Hitesh Kumar Sharma, Mahadev, Raman Chadha, Gaurav Nagarkoti, Prashant AhlawatList of authors in order
- Landing page
-
https://doi.org/10.1063/5.0154756Publisher landing page
- PDF URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdfDirect OA link when available
- Concepts
-
Morphing, Computer science, Artificial intelligence, Computer vision, Face (sociological concept), Facial recognition system, Process (computing), Feature extraction, Sociology, Social science, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4380839162 |
|---|---|
| doi | https://doi.org/10.1063/5.0154756 |
| ids.doi | https://doi.org/10.1063/5.0154756 |
| ids.openalex | https://openalex.org/W4380839162 |
| fwci | 0.0 |
| type | article |
| title | Unsupervised machine learning algorithm for face morphing |
| biblio.issue | |
| biblio.volume | 2782 |
| biblio.last_page | 020108 |
| biblio.first_page | 020108 |
| topics[0].id | https://openalex.org/T11448 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9477999806404114 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face recognition and analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C50637493 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9957785606384277 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1136781 |
| concepts[0].display_name | Morphing |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7711707353591919 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6257027983665466 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5956035256385803 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C2779304628 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5834622383117676 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[4].display_name | Face (sociological concept) |
| concepts[5].id | https://openalex.org/C31510193 |
| concepts[5].level | 3 |
| concepts[5].score | 0.538946270942688 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1192553 |
| concepts[5].display_name | Facial recognition system |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47603750228881836 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C52622490 |
| concepts[7].level | 2 |
| concepts[7].score | 0.2411787509918213 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[7].display_name | Feature extraction |
| concepts[8].id | https://openalex.org/C144024400 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[8].display_name | Sociology |
| concepts[9].id | https://openalex.org/C36289849 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[9].display_name | Social science |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/morphing |
| keywords[0].score | 0.9957785606384277 |
| keywords[0].display_name | Morphing |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7711707353591919 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6257027983665466 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5956035256385803 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/face |
| keywords[4].score | 0.5834622383117676 |
| keywords[4].display_name | Face (sociological concept) |
| keywords[5].id | https://openalex.org/keywords/facial-recognition-system |
| keywords[5].score | 0.538946270942688 |
| keywords[5].display_name | Facial recognition system |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.47603750228881836 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/feature-extraction |
| keywords[7].score | 0.2411787509918213 |
| keywords[7].display_name | Feature extraction |
| language | en |
| locations[0].id | doi:10.1063/5.0154756 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764696622 |
| locations[0].source.issn | 0094-243X, 1551-7616, 1935-0465 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0094-243X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | AIP conference proceedings |
| locations[0].source.host_organization | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_name | American Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320257 |
| locations[0].source.host_organization_lineage_names | American Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | AIP Conference Proceedings |
| locations[0].landing_page_url | https://doi.org/10.1063/5.0154756 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5002716826 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6816-0324 |
| authorships[0].author.display_name | Hitesh Kumar Sharma |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, University of Petroleum & Energy Studies (UPES), Energy Acres, Bidholi, Dehradun-248007, Uttarakhand, India |
| authorships[0].institutions[0].id | https://openalex.org/I5847235 |
| authorships[0].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hitesh Kumar Sharma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, University of Petroleum & Energy Studies (UPES), Energy Acres, Bidholi, Dehradun-248007, Uttarakhand, India |
| authorships[1].author.id | https://openalex.org/A5006126284 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Mahadev |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I154851008, https://openalex.org/I4387154038 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, Quantum University, Roorkee, India |
| authorships[1].institutions[0].id | https://openalex.org/I4387154038 |
| authorships[1].institutions[0].ror | https://ror.org/0175g1p16 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4387154038 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | Quantum University |
| authorships[1].institutions[1].id | https://openalex.org/I154851008 |
| authorships[1].institutions[1].ror | https://ror.org/00582g326 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I154851008 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Indian Institute of Technology Roorkee |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | None Mahadev |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Quantum University, Roorkee, India |
| authorships[2].author.id | https://openalex.org/A5053387292 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0814-671X |
| authorships[2].author.display_name | Raman Chadha |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University Institute of Engineering, Chandigarh University, Gharaun, Mohali, India |
| authorships[2].institutions[0].id | https://openalex.org/I101407740 |
| authorships[2].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Chandigarh University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Raman Chadha |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, University Institute of Engineering, Chandigarh University, Gharaun, Mohali, India |
| authorships[3].author.id | https://openalex.org/A5092178864 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Gaurav Nagarkoti |
| authorships[3].affiliations[0].raw_affiliation_string | Bachelor of Computer Application, GL Bajaj Institute of Management, Greater Noida, India |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gaurav Nagarkoti |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Bachelor of Computer Application, GL Bajaj Institute of Management, Greater Noida, India |
| authorships[4].author.id | https://openalex.org/A5061763537 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7419-2189 |
| authorships[4].author.display_name | Prashant Ahlawat |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I101407740 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, University Institute of Engineering, Chandigarh University, Gharaun, Mohali, India |
| authorships[4].institutions[0].id | https://openalex.org/I101407740 |
| authorships[4].institutions[0].ror | https://ror.org/05t4pvx35 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I101407740 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Chandigarh University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Prashant Ahlawat |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, University Institute of Engineering, Chandigarh University, Gharaun, Mohali, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised machine learning algorithm for face morphing |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11448 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9477999806404114 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face recognition and analysis |
| related_works | https://openalex.org/W1679315481, https://openalex.org/W3151495635, https://openalex.org/W4385170164, https://openalex.org/W4236870338, https://openalex.org/W2016917053, https://openalex.org/W1580681114, https://openalex.org/W51472912, https://openalex.org/W4361020386, https://openalex.org/W2098693229, https://openalex.org/W2384651879 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1063/5.0154756 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764696622 |
| best_oa_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0094-243X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | AIP conference proceedings |
| best_oa_location.source.host_organization | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_name | American Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| best_oa_location.source.host_organization_lineage_names | American Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | AIP Conference Proceedings |
| best_oa_location.landing_page_url | https://doi.org/10.1063/5.0154756 |
| primary_location.id | doi:10.1063/5.0154756 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764696622 |
| primary_location.source.issn | 0094-243X, 1551-7616, 1935-0465 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0094-243X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | AIP conference proceedings |
| primary_location.source.host_organization | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_name | American Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320257 |
| primary_location.source.host_organization_lineage_names | American Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://pubs.aip.org/aip/acp/article-pdf/doi/10.1063/5.0154756/18001236/020108_1_5.0154756.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | AIP Conference Proceedings |
| primary_location.landing_page_url | https://doi.org/10.1063/5.0154756 |
| publication_date | 2023-01-01 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2126502618, https://openalex.org/W2144834199, https://openalex.org/W33010664, https://openalex.org/W4229837844 |
| referenced_works_count | 4 |
| abstract_inverted_index.a | 46, 65, 79, 93, 107, 130, 194, 223, 230 |
| abstract_inverted_index.an | 43 |
| abstract_inverted_index.be | 99, 159, 163, 188, 213 |
| abstract_inverted_index.by | 89 |
| abstract_inverted_index.if | 142 |
| abstract_inverted_index.in | 29, 34, 52, 61, 197 |
| abstract_inverted_index.is | 2, 71, 78, 135, 146, 167, 193, 202, 281 |
| abstract_inverted_index.it | 161, 234, 288 |
| abstract_inverted_index.of | 5, 11, 18, 23, 42, 54, 67, 92, 95, 106, 205, 249, 267 |
| abstract_inverted_index.on | 73 |
| abstract_inverted_index.or | 7, 140 |
| abstract_inverted_index.to | 38, 49, 110, 123, 128, 158, 219, 254, 260 |
| abstract_inverted_index.we | 252 |
| abstract_inverted_index.For | 154 |
| abstract_inverted_index.Our | 215 |
| abstract_inverted_index.aim | 253 |
| abstract_inverted_index.and | 175, 208, 221, 247, 270, 273 |
| abstract_inverted_index.are | 64, 116 |
| abstract_inverted_index.for | 102, 235, 241, 275, 284, 294 |
| abstract_inverted_index.has | 229 |
| abstract_inverted_index.how | 209 |
| abstract_inverted_index.is, | 180 |
| abstract_inverted_index.the | 3, 9, 12, 16, 35, 40, 55, 85, 90, 104, 111, 121, 126, 144, 150, 155, 172, 176, 181, 184, 198, 203, 237, 258, 262, 265, 268, 290, 298 |
| abstract_inverted_index.two | 185 |
| abstract_inverted_index.via | 137 |
| abstract_inverted_index.Face | 0, 76 |
| abstract_inverted_index.aims | 218 |
| abstract_inverted_index.been | 27 |
| abstract_inverted_index.best | 238, 282 |
| abstract_inverted_index.done | 136 |
| abstract_inverted_index.even | 141 |
| abstract_inverted_index.face | 10, 17, 24, 41, 58, 86, 105, 151, 225, 242, 285, 295 |
| abstract_inverted_index.have | 26, 257 |
| abstract_inverted_index.into | 233 |
| abstract_inverted_index.less | 169 |
| abstract_inverted_index.many | 117 |
| abstract_inverted_index.mesh | 94 |
| abstract_inverted_index.most | 291 |
| abstract_inverted_index.name | 299 |
| abstract_inverted_index.such | 210 |
| abstract_inverted_index.test | 20, 108 |
| abstract_inverted_index.that | 70, 82, 97, 165, 179, 228 |
| abstract_inverted_index.used | 101 |
| abstract_inverted_index.very | 168, 189 |
| abstract_inverted_index.will | 212, 256 |
| abstract_inverted_index.with | 15, 45, 120, 149 |
| abstract_inverted_index.work | 217 |
| abstract_inverted_index."what | 201 |
| abstract_inverted_index.Since | 287 |
| abstract_inverted_index.Using | 244 |
| abstract_inverted_index.about | 200 |
| abstract_inverted_index.actor | 44, 48 |
| abstract_inverted_index.among | 278 |
| abstract_inverted_index.brief | 195 |
| abstract_inverted_index.faces | 125, 266 |
| abstract_inverted_index.finds | 289 |
| abstract_inverted_index.hence | 297 |
| abstract_inverted_index.high, | 190 |
| abstract_inverted_index.image | 14, 68, 109, 174, 178 |
| abstract_inverted_index.model | 231 |
| abstract_inverted_index.morph | 124 |
| abstract_inverted_index.quite | 30 |
| abstract_inverted_index.still | 74, 133 |
| abstract_inverted_index.there | 115, 166, 192 |
| abstract_inverted_index.which | 277 |
| abstract_inverted_index.would | 98 |
| abstract_inverted_index.Image. | 113 |
| abstract_inverted_index.Though | 114 |
| abstract_inverted_index.actor. | 56 |
| abstract_inverted_index.create | 255 |
| abstract_inverted_index.decide | 274 |
| abstract_inverted_index.design | 220 |
| abstract_inverted_index.image. | 21 |
| abstract_inverted_index.images | 186 |
| abstract_inverted_index.itself | 276 |
| abstract_inverted_index.manual | 138 |
| abstract_inverted_index.mostly | 33 |
| abstract_inverted_index.movies | 51 |
| abstract_inverted_index.python | 245 |
| abstract_inverted_index.rarely | 147 |
| abstract_inverted_index.report | 199 |
| abstract_inverted_index.result | 66 |
| abstract_inverted_index.select | 129 |
| abstract_inverted_index.should | 162, 187 |
| abstract_inverted_index.Typical | 57 |
| abstract_inverted_index.ability | 122, 259 |
| abstract_inverted_index.absence | 53 |
| abstract_inverted_index.another | 19 |
| abstract_inverted_index.between | 171, 183, 264 |
| abstract_inverted_index.cinemas | 63 |
| abstract_inverted_index.complex | 80 |
| abstract_inverted_index.diverse | 31 |
| abstract_inverted_index.ensured | 164 |
| abstract_inverted_index.fields, | 32 |
| abstract_inverted_index.further | 100 |
| abstract_inverted_index.images. | 75 |
| abstract_inverted_index.largely | 134 |
| abstract_inverted_index.merging | 8 |
| abstract_inverted_index.morphed | 177 |
| abstract_inverted_index.process | 4, 145, 204 |
| abstract_inverted_index.program | 227 |
| abstract_inverted_index.replace | 39 |
| abstract_inverted_index.results | 157 |
| abstract_inverted_index.similar | 224 |
| abstract_inverted_index.subject | 13, 112, 269 |
| abstract_inverted_index.various | 271 |
| abstract_inverted_index.complete | 50 |
| abstract_inverted_index.concepts | 248 |
| abstract_inverted_index.followed | 88 |
| abstract_inverted_index.industry | 37 |
| abstract_inverted_index.learning | 251 |
| abstract_inverted_index.marking, | 87 |
| abstract_inverted_index.morphing | 1, 6, 25, 59, 69, 77, 103, 152, 156, 207, 226 |
| abstract_inverted_index.original | 173 |
| abstract_inverted_index.proceeds | 127 |
| abstract_inverted_index.program. | 153 |
| abstract_inverted_index.programs | 119 |
| abstract_inverted_index.research | 216 |
| abstract_inverted_index.seamless | 160 |
| abstract_inverted_index.suitable | 131, 239, 283 |
| abstract_inverted_index.utilized | 28 |
| abstract_inverted_index.achieved. | 214 |
| abstract_inverted_index.calculate | 261 |
| abstract_inverted_index.candidate | 132, 240, 293 |
| abstract_inverted_index.different | 118, 279 |
| abstract_inverted_index.formation | 91 |
| abstract_inverted_index.implement | 222 |
| abstract_inverted_index.morphing, | 296 |
| abstract_inverted_index.morphing. | 243, 286 |
| abstract_inverted_index.procedure | 81 |
| abstract_inverted_index.selecting | 236 |
| abstract_inverted_index.therefore | 191 |
| abstract_inverted_index.triangles | 96 |
| abstract_inverted_index.Techniques | 22 |
| abstract_inverted_index.automated, | 143 |
| abstract_inverted_index.candidates | 272, 280 |
| abstract_inverted_index.commercial | 62 |
| abstract_inverted_index.difference | 170 |
| abstract_inverted_index.extracting | 84 |
| abstract_inverted_index.integrated | 148, 232 |
| abstract_inverted_index.procedures | 139 |
| abstract_inverted_index.resembling | 47, 292 |
| abstract_inverted_index.description | 196 |
| abstract_inverted_index.encompasses | 83 |
| abstract_inverted_index.implemented | 60, 72 |
| abstract_inverted_index.programming | 246 |
| abstract_inverted_index.resemblance | 182, 211, 263 |
| abstract_inverted_index.implementing | 206 |
| abstract_inverted_index.unsupervised | 250 |
| abstract_inverted_index.entertainment | 36 |
| abstract_inverted_index.Doppelgänger. | 300 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.06823966 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |