Unsupervised Region-Based Anomaly Detection In Brain MRI With Adversarial Image Inpainting Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/isbi48211.2021.9434115
Medical segmentation is performed to determine the bounds of regions of interest (ROI) prior to surgery. By allowing the study of growth, structure, and behaviour of the ROI in the planning phase, critical information can be obtained, increasing the likelihood of a successful operation. Usually, segmentations are performed manually or via machine learning methods trained on manual annotations. In contrast, this paper proposes a fully automatic, unsupervised inpainting-based brain tumour segmentation system for T1-weighted MRI. First, a deep convolutional neural network (DCNN) is trained to reconstruct missing healthy brain regions. Then, upon application, anomalous regions are determined by identifying areas of highest reconstruction loss. Finally, superpixel segmentation is performed to segment those regions. We show the proposed system is able to segment various sized and abstract tumours and achieves a mean and standard deviation Dice score of 0.771 and 0.176, respectively.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/isbi48211.2021.9434115
- OA Status
- gold
- Cited By
- 34
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3165355476
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3165355476Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/isbi48211.2021.9434115Digital Object Identifier
- Title
-
Unsupervised Region-Based Anomaly Detection In Brain MRI With Adversarial Image InpaintingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-04-13Full publication date if available
- Authors
-
Bao T. Nguyen, Arthur M. Feldman, Sarath Bethapudi, Andrew Jennings, Chris G. WillcocksList of authors in order
- Landing page
-
https://doi.org/10.1109/isbi48211.2021.9434115Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://durham-repository.worktribe.com/output/1141356Direct OA link when available
- Concepts
-
Artificial intelligence, Segmentation, Computer science, Inpainting, Pattern recognition (psychology), Convolutional neural network, Region of interest, Image segmentation, Deep learning, Anomaly detection, Computer vision, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
34Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 7, 2023: 13, 2022: 8, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3165355476 |
|---|---|
| doi | https://doi.org/10.1109/isbi48211.2021.9434115 |
| ids.doi | https://doi.org/10.1109/isbi48211.2021.9434115 |
| ids.mag | 3165355476 |
| ids.openalex | https://openalex.org/W3165355476 |
| fwci | 4.79453778 |
| type | article |
| title | Unsupervised Region-Based Anomaly Detection In Brain MRI With Adversarial Image Inpainting |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 1131 |
| biblio.first_page | 1127 |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T10775 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.8375435471534729 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7392702102661133 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7185083627700806 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11727466 |
| concepts[3].level | 3 |
| concepts[3].score | 0.7086394429206848 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[3].display_name | Inpainting |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6422116160392761 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C81363708 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5969747304916382 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[5].display_name | Convolutional neural network |
| concepts[6].id | https://openalex.org/C19609008 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5389280319213867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2138203 |
| concepts[6].display_name | Region of interest |
| concepts[7].id | https://openalex.org/C124504099 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4970281422138214 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[7].display_name | Image segmentation |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4577452540397644 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C739882 |
| concepts[9].level | 2 |
| concepts[9].score | 0.43384304642677307 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[9].display_name | Anomaly detection |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4268212914466858 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3986082971096039 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.8375435471534729 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.7392702102661133 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7185083627700806 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/inpainting |
| keywords[3].score | 0.7086394429206848 |
| keywords[3].display_name | Inpainting |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.6422116160392761 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[5].score | 0.5969747304916382 |
| keywords[5].display_name | Convolutional neural network |
| keywords[6].id | https://openalex.org/keywords/region-of-interest |
| keywords[6].score | 0.5389280319213867 |
| keywords[6].display_name | Region of interest |
| keywords[7].id | https://openalex.org/keywords/image-segmentation |
| keywords[7].score | 0.4970281422138214 |
| keywords[7].display_name | Image segmentation |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4577452540397644 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/anomaly-detection |
| keywords[9].score | 0.43384304642677307 |
| keywords[9].display_name | Anomaly detection |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.4268212914466858 |
| keywords[10].display_name | Computer vision |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.3986082971096039 |
| keywords[11].display_name | Image (mathematics) |
| language | en |
| locations[0].id | doi:10.1109/isbi48211.2021.9434115 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) |
| locations[0].landing_page_url | https://doi.org/10.1109/isbi48211.2021.9434115 |
| locations[1].id | pmh:oai:dro.dur.ac.uk.OAI2:34357 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400188 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Durham Research Online (Durham University) |
| locations[1].source.host_organization | https://openalex.org/I190082696 |
| locations[1].source.host_organization_name | Durham University |
| locations[1].source.host_organization_lineage | https://openalex.org/I190082696 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Conference item |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13 - 16 April 2021 [Conference proceedings] |
| locations[1].landing_page_url | http://dro.dur.ac.uk/34357/ |
| locations[2].id | pmh:oai:durham-repository.worktribe.com:1141356 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | acceptedVersion |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://durham-repository.worktribe.com/output/1141356 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5080821864 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8341-7319 |
| authorships[0].author.display_name | Bao T. Nguyen |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, Durham University |
| authorships[0].institutions[0].id | https://openalex.org/I190082696 |
| authorships[0].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Durham University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bao Nguyen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Durham University |
| authorships[1].author.id | https://openalex.org/A5000060972 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8351-9569 |
| authorships[1].author.display_name | Arthur M. Feldman |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I23923803 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Engineering, University of Exeter |
| authorships[1].institutions[0].id | https://openalex.org/I23923803 |
| authorships[1].institutions[0].ror | https://ror.org/03yghzc09 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I23923803 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Exeter |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adam Feldman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Engineering, University of Exeter |
| authorships[2].author.id | https://openalex.org/A5022463654 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2773-8270 |
| authorships[2].author.display_name | Sarath Bethapudi |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800136903 |
| authorships[2].affiliations[0].raw_affiliation_string | County Durham and Darlington NHS Foundation Trust |
| authorships[2].institutions[0].id | https://openalex.org/I2800136903 |
| authorships[2].institutions[0].ror | https://ror.org/03vamsh08 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800136903 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | County Durham and Darlington NHS Foundation Trust |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sarath Bethapudi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | County Durham and Darlington NHS Foundation Trust |
| authorships[3].author.id | https://openalex.org/A5021381280 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5720-2736 |
| authorships[3].author.display_name | Andrew Jennings |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2800136903 |
| authorships[3].affiliations[0].raw_affiliation_string | County Durham and Darlington NHS Foundation Trust |
| authorships[3].institutions[0].id | https://openalex.org/I2800136903 |
| authorships[3].institutions[0].ror | https://ror.org/03vamsh08 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800136903 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | County Durham and Darlington NHS Foundation Trust |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andrew Jennings |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | County Durham and Darlington NHS Foundation Trust |
| authorships[4].author.id | https://openalex.org/A5023499426 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6821-3924 |
| authorships[4].author.display_name | Chris G. Willcocks |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I190082696 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer Science, Durham University |
| authorships[4].institutions[0].id | https://openalex.org/I190082696 |
| authorships[4].institutions[0].ror | https://ror.org/01v29qb04 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I190082696 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | Durham University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Chris G. Willcocks |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Durham University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://durham-repository.worktribe.com/output/1141356 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Region-Based Anomaly Detection In Brain MRI With Adversarial Image Inpainting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| related_works | https://openalex.org/W2059339452, https://openalex.org/W2995115364, https://openalex.org/W2020564930, https://openalex.org/W1574999717, https://openalex.org/W2262668847, https://openalex.org/W2370766994, https://openalex.org/W166251047, https://openalex.org/W4285195761, https://openalex.org/W2960184797, https://openalex.org/W4285827401 |
| cited_by_count | 34 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:durham-repository.worktribe.com:1141356 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | acceptedVersion |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://durham-repository.worktribe.com/output/1141356 |
| primary_location.id | doi:10.1109/isbi48211.2021.9434115 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) |
| primary_location.landing_page_url | https://doi.org/10.1109/isbi48211.2021.9434115 |
| publication_date | 2021-04-13 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6639824700, https://openalex.org/W2963420272, https://openalex.org/W6748582592, https://openalex.org/W6762735712, https://openalex.org/W1999478155, https://openalex.org/W2949863098, https://openalex.org/W2021787435, https://openalex.org/W2154906251, https://openalex.org/W2151050383, https://openalex.org/W6748495906, https://openalex.org/W2911672077, https://openalex.org/W2803446235, https://openalex.org/W1577188972, https://openalex.org/W2135359786, https://openalex.org/W2599354622, https://openalex.org/W2052507258, https://openalex.org/W2963733773, https://openalex.org/W1901129140, https://openalex.org/W2963045681, https://openalex.org/W2963836885, https://openalex.org/W2785678896, https://openalex.org/W2946576587, https://openalex.org/W2978971541, https://openalex.org/W2099471712, https://openalex.org/W2483208826, https://openalex.org/W4320013936, https://openalex.org/W2787947370 |
| referenced_works_count | 27 |
| abstract_inverted_index.a | 41, 63, 76, 129 |
| abstract_inverted_index.By | 16 |
| abstract_inverted_index.In | 58 |
| abstract_inverted_index.We | 113 |
| abstract_inverted_index.be | 35 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 28 |
| abstract_inverted_index.is | 2, 82, 107, 118 |
| abstract_inverted_index.of | 8, 10, 20, 25, 40, 100, 136 |
| abstract_inverted_index.on | 55 |
| abstract_inverted_index.or | 49 |
| abstract_inverted_index.to | 4, 14, 84, 109, 120 |
| abstract_inverted_index.ROI | 27 |
| abstract_inverted_index.and | 23, 124, 127, 131, 138 |
| abstract_inverted_index.are | 46, 95 |
| abstract_inverted_index.can | 34 |
| abstract_inverted_index.for | 72 |
| abstract_inverted_index.the | 6, 18, 26, 29, 38, 115 |
| abstract_inverted_index.via | 50 |
| abstract_inverted_index.Dice | 134 |
| abstract_inverted_index.MRI. | 74 |
| abstract_inverted_index.able | 119 |
| abstract_inverted_index.deep | 77 |
| abstract_inverted_index.mean | 130 |
| abstract_inverted_index.show | 114 |
| abstract_inverted_index.this | 60 |
| abstract_inverted_index.upon | 91 |
| abstract_inverted_index.(ROI) | 12 |
| abstract_inverted_index.0.771 | 137 |
| abstract_inverted_index.Then, | 90 |
| abstract_inverted_index.areas | 99 |
| abstract_inverted_index.brain | 68, 88 |
| abstract_inverted_index.fully | 64 |
| abstract_inverted_index.loss. | 103 |
| abstract_inverted_index.paper | 61 |
| abstract_inverted_index.prior | 13 |
| abstract_inverted_index.score | 135 |
| abstract_inverted_index.sized | 123 |
| abstract_inverted_index.study | 19 |
| abstract_inverted_index.those | 111 |
| abstract_inverted_index.(DCNN) | 81 |
| abstract_inverted_index.0.176, | 139 |
| abstract_inverted_index.First, | 75 |
| abstract_inverted_index.bounds | 7 |
| abstract_inverted_index.manual | 56 |
| abstract_inverted_index.neural | 79 |
| abstract_inverted_index.phase, | 31 |
| abstract_inverted_index.system | 71, 117 |
| abstract_inverted_index.tumour | 69 |
| abstract_inverted_index.Medical | 0 |
| abstract_inverted_index.growth, | 21 |
| abstract_inverted_index.healthy | 87 |
| abstract_inverted_index.highest | 101 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.methods | 53 |
| abstract_inverted_index.missing | 86 |
| abstract_inverted_index.network | 80 |
| abstract_inverted_index.regions | 9, 94 |
| abstract_inverted_index.segment | 110, 121 |
| abstract_inverted_index.trained | 54, 83 |
| abstract_inverted_index.tumours | 126 |
| abstract_inverted_index.various | 122 |
| abstract_inverted_index.Finally, | 104 |
| abstract_inverted_index.Usually, | 44 |
| abstract_inverted_index.abstract | 125 |
| abstract_inverted_index.achieves | 128 |
| abstract_inverted_index.allowing | 17 |
| abstract_inverted_index.critical | 32 |
| abstract_inverted_index.interest | 11 |
| abstract_inverted_index.learning | 52 |
| abstract_inverted_index.manually | 48 |
| abstract_inverted_index.planning | 30 |
| abstract_inverted_index.proposed | 116 |
| abstract_inverted_index.proposes | 62 |
| abstract_inverted_index.regions. | 89, 112 |
| abstract_inverted_index.standard | 132 |
| abstract_inverted_index.surgery. | 15 |
| abstract_inverted_index.anomalous | 93 |
| abstract_inverted_index.behaviour | 24 |
| abstract_inverted_index.contrast, | 59 |
| abstract_inverted_index.determine | 5 |
| abstract_inverted_index.deviation | 133 |
| abstract_inverted_index.obtained, | 36 |
| abstract_inverted_index.performed | 3, 47, 108 |
| abstract_inverted_index.automatic, | 65 |
| abstract_inverted_index.determined | 96 |
| abstract_inverted_index.increasing | 37 |
| abstract_inverted_index.likelihood | 39 |
| abstract_inverted_index.operation. | 43 |
| abstract_inverted_index.structure, | 22 |
| abstract_inverted_index.successful | 42 |
| abstract_inverted_index.superpixel | 105 |
| abstract_inverted_index.T1-weighted | 73 |
| abstract_inverted_index.identifying | 98 |
| abstract_inverted_index.information | 33 |
| abstract_inverted_index.reconstruct | 85 |
| abstract_inverted_index.annotations. | 57 |
| abstract_inverted_index.application, | 92 |
| abstract_inverted_index.segmentation | 1, 70, 106 |
| abstract_inverted_index.unsupervised | 66 |
| abstract_inverted_index.convolutional | 78 |
| abstract_inverted_index.respectively. | 140 |
| abstract_inverted_index.segmentations | 45 |
| abstract_inverted_index.reconstruction | 102 |
| abstract_inverted_index.inpainting-based | 67 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7099999785423279 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.94979796 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |