Unsupervised Salient Object Detection by Aggregating Multi-Level Cues Article Swipe
Chenxing Xia
,
Hanling Zhang
·
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1109/jphot.2018.2881271
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1109/jphot.2018.2881271
In this paper, we present a novel method to detect salient object based on multi-level cues. First, a proposal processing scheme is developed by various object-level saliency cues to generate an initial saliency map. For the sake of more accurate object boundaries, a two-stage optimization mechanism is then proposed upon superpixel-level. Finally, the superpixel-level saliency map is further improved to construct the final saliency map by applying superpixel-to-pixel mapping. Extensive experimental results demonstrate that the proposed algorithm performs favorably against the state-of-art saliency detection methods in terms of different evaluation metrics on several benchmark datasets.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jphot.2018.2881271
- OA Status
- gold
- Cited By
- 8
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2900745190
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2900745190Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jphot.2018.2881271Digital Object Identifier
- Title
-
Unsupervised Salient Object Detection by Aggregating Multi-Level CuesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-14Full publication date if available
- Authors
-
Chenxing Xia, Hanling ZhangList of authors in order
- Landing page
-
https://doi.org/10.1109/jphot.2018.2881271Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jphot.2018.2881271Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Benchmark (surveying), Saliency map, Pattern recognition (psychology), Salient, Object (grammar), Object detection, Pixel, Computer vision, Construct (python library), Scheme (mathematics), Mathematics, Geodesy, Programming language, Mathematical analysis, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 2, 2022: 2, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2900745190 |
|---|---|
| doi | https://doi.org/10.1109/jphot.2018.2881271 |
| ids.doi | https://doi.org/10.1109/jphot.2018.2881271 |
| ids.mag | 2900745190 |
| ids.openalex | https://openalex.org/W2900745190 |
| fwci | 0.28876508 |
| type | article |
| title | Unsupervised Salient Object Detection by Aggregating Multi-Level Cues |
| awards[0].id | https://openalex.org/G5092362604 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61472131 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G6297370266 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61672222 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G3953430389 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61572183 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 6 |
| biblio.volume | 10 |
| biblio.last_page | 11 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11605 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Visual Attention and Saliency Detection |
| topics[1].id | https://openalex.org/T10971 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.984499990940094 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2809 |
| topics[1].subfield.display_name | Sensory Systems |
| topics[1].display_name | Olfactory and Sensory Function Studies |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9768000245094299 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1820 |
| apc_list.currency | USD |
| apc_list.value_usd | 1820 |
| apc_paid.value | 1820 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1820 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8116061687469482 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7675326466560364 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7658253908157349 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C2779679900 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6632924675941467 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25304431 |
| concepts[3].display_name | Saliency map |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6316795349121094 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C2780719617 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6310231685638428 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[5].display_name | Salient |
| concepts[6].id | https://openalex.org/C2781238097 |
| concepts[6].level | 2 |
| concepts[6].score | 0.623832643032074 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[6].display_name | Object (grammar) |
| concepts[7].id | https://openalex.org/C2776151529 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5537562966346741 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[7].display_name | Object detection |
| concepts[8].id | https://openalex.org/C160633673 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5499640107154846 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[8].display_name | Pixel |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5376374125480652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C2780801425 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5006084442138672 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5164392 |
| concepts[10].display_name | Construct (python library) |
| concepts[11].id | https://openalex.org/C77618280 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4337003827095032 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[11].display_name | Scheme (mathematics) |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14733397960662842 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C134306372 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[15].display_name | Mathematical analysis |
| concepts[16].id | https://openalex.org/C205649164 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[16].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8116061687469482 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7675326466560364 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.7658253908157349 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/saliency-map |
| keywords[3].score | 0.6632924675941467 |
| keywords[3].display_name | Saliency map |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.6316795349121094 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/salient |
| keywords[5].score | 0.6310231685638428 |
| keywords[5].display_name | Salient |
| keywords[6].id | https://openalex.org/keywords/object |
| keywords[6].score | 0.623832643032074 |
| keywords[6].display_name | Object (grammar) |
| keywords[7].id | https://openalex.org/keywords/object-detection |
| keywords[7].score | 0.5537562966346741 |
| keywords[7].display_name | Object detection |
| keywords[8].id | https://openalex.org/keywords/pixel |
| keywords[8].score | 0.5499640107154846 |
| keywords[8].display_name | Pixel |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.5376374125480652 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/construct |
| keywords[10].score | 0.5006084442138672 |
| keywords[10].display_name | Construct (python library) |
| keywords[11].id | https://openalex.org/keywords/scheme |
| keywords[11].score | 0.4337003827095032 |
| keywords[11].display_name | Scheme (mathematics) |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.14733397960662842 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/jphot.2018.2881271 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72499069 |
| locations[0].source.issn | 1943-0647, 1943-0655 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1943-0647 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE photonics journal |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Photonics Journal |
| locations[0].landing_page_url | https://doi.org/10.1109/jphot.2018.2881271 |
| locations[1].id | pmh:oai:doaj.org/article:0e3af6eb5a7e41709f4aeef2ef4c8ec5 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Photonics Journal, Vol 10, Iss 6, Pp 1-11 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/0e3af6eb5a7e41709f4aeef2ef4c8ec5 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5087739571 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0750-1265 |
| authorships[0].author.display_name | Chenxing Xia |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, Changsha, China |
| authorships[0].institutions[0].id | https://openalex.org/I16609230 |
| authorships[0].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hunan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenxing Xia |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, Changsha, China |
| authorships[1].author.id | https://openalex.org/A5102956076 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5954-1424 |
| authorships[1].author.display_name | Hanling Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I16609230 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Electronic Engineering, Hunan University, Changsha, China |
| authorships[1].institutions[0].id | https://openalex.org/I16609230 |
| authorships[1].institutions[0].ror | https://ror.org/05htk5m33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I16609230 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hunan University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hanling Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Electronic Engineering, Hunan University, Changsha, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jphot.2018.2881271 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unsupervised Salient Object Detection by Aggregating Multi-Level Cues |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11605 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Visual Attention and Saliency Detection |
| related_works | https://openalex.org/W4390721878, https://openalex.org/W1967391339, https://openalex.org/W2575602754, https://openalex.org/W3009179364, https://openalex.org/W2376243400, https://openalex.org/W2351778949, https://openalex.org/W2132649329, https://openalex.org/W150054742, https://openalex.org/W2004535387, https://openalex.org/W2394211659 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jphot.2018.2881271 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72499069 |
| best_oa_location.source.issn | 1943-0647, 1943-0655 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1943-0647 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE photonics journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Photonics Journal |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jphot.2018.2881271 |
| primary_location.id | doi:10.1109/jphot.2018.2881271 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72499069 |
| primary_location.source.issn | 1943-0647, 1943-0655 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1943-0647 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE photonics journal |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Photonics Journal |
| primary_location.landing_page_url | https://doi.org/10.1109/jphot.2018.2881271 |
| publication_date | 2018-11-14 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2036576620, https://openalex.org/W2171378720, https://openalex.org/W2762270259, https://openalex.org/W2065372998, https://openalex.org/W2131297486, https://openalex.org/W6633201533, https://openalex.org/W2588600710, https://openalex.org/W2047670868, https://openalex.org/W2118246710, https://openalex.org/W1903029394, https://openalex.org/W6600850345, https://openalex.org/W2679026266, https://openalex.org/W2100470808, https://openalex.org/W1978479866, https://openalex.org/W6640351089, https://openalex.org/W2071869680, https://openalex.org/W3103604207, https://openalex.org/W2086791339, https://openalex.org/W2471856327, https://openalex.org/W2039313011, https://openalex.org/W2002781701, https://openalex.org/W2055180303, https://openalex.org/W1592631677, https://openalex.org/W1999101396, https://openalex.org/W2727859994, https://openalex.org/W2534181202, https://openalex.org/W2116373927, https://openalex.org/W1984452441, https://openalex.org/W1982075130, https://openalex.org/W2211996548, https://openalex.org/W1581590495, https://openalex.org/W21025885, https://openalex.org/W2619748849, https://openalex.org/W1923594904, https://openalex.org/W1555385401, https://openalex.org/W892735016 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 5, 17, 42 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 30 |
| abstract_inverted_index.by | 23, 65 |
| abstract_inverted_index.in | 85 |
| abstract_inverted_index.is | 21, 46, 56 |
| abstract_inverted_index.of | 37, 87 |
| abstract_inverted_index.on | 13, 91 |
| abstract_inverted_index.to | 8, 28, 59 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.For | 34 |
| abstract_inverted_index.map | 55, 64 |
| abstract_inverted_index.the | 35, 52, 61, 74, 80 |
| abstract_inverted_index.cues | 27 |
| abstract_inverted_index.map. | 33 |
| abstract_inverted_index.more | 38 |
| abstract_inverted_index.sake | 36 |
| abstract_inverted_index.that | 73 |
| abstract_inverted_index.then | 47 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.upon | 49 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.cues. | 15 |
| abstract_inverted_index.final | 62 |
| abstract_inverted_index.novel | 6 |
| abstract_inverted_index.terms | 86 |
| abstract_inverted_index.First, | 16 |
| abstract_inverted_index.detect | 9 |
| abstract_inverted_index.method | 7 |
| abstract_inverted_index.object | 11, 40 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.scheme | 20 |
| abstract_inverted_index.against | 79 |
| abstract_inverted_index.further | 57 |
| abstract_inverted_index.initial | 31 |
| abstract_inverted_index.methods | 84 |
| abstract_inverted_index.metrics | 90 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.results | 71 |
| abstract_inverted_index.salient | 10 |
| abstract_inverted_index.several | 92 |
| abstract_inverted_index.various | 24 |
| abstract_inverted_index.Finally, | 51 |
| abstract_inverted_index.accurate | 39 |
| abstract_inverted_index.applying | 66 |
| abstract_inverted_index.generate | 29 |
| abstract_inverted_index.improved | 58 |
| abstract_inverted_index.mapping. | 68 |
| abstract_inverted_index.performs | 77 |
| abstract_inverted_index.proposal | 18 |
| abstract_inverted_index.proposed | 48, 75 |
| abstract_inverted_index.saliency | 26, 32, 54, 63, 82 |
| abstract_inverted_index.Extensive | 69 |
| abstract_inverted_index.algorithm | 76 |
| abstract_inverted_index.benchmark | 93 |
| abstract_inverted_index.construct | 60 |
| abstract_inverted_index.datasets. | 94 |
| abstract_inverted_index.detection | 83 |
| abstract_inverted_index.developed | 22 |
| abstract_inverted_index.different | 88 |
| abstract_inverted_index.favorably | 78 |
| abstract_inverted_index.mechanism | 45 |
| abstract_inverted_index.two-stage | 43 |
| abstract_inverted_index.evaluation | 89 |
| abstract_inverted_index.processing | 19 |
| abstract_inverted_index.boundaries, | 41 |
| abstract_inverted_index.demonstrate | 72 |
| abstract_inverted_index.multi-level | 14 |
| abstract_inverted_index.experimental | 70 |
| abstract_inverted_index.object-level | 25 |
| abstract_inverted_index.optimization | 44 |
| abstract_inverted_index.state-of-art | 81 |
| abstract_inverted_index.superpixel-level | 53 |
| abstract_inverted_index.superpixel-level. | 50 |
| abstract_inverted_index.superpixel-to-pixel | 67 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.57273708 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |