Unveiling Ancient Maya Settlements Using Aerial LiDAR Image Segmentation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2403.05773
Manual identification of archaeological features in LiDAR imagery is labor-intensive, costly, and requires archaeological expertise. This paper shows how recent advancements in deep learning (DL) present efficient solutions for accurately segmenting archaeological structures in aerial LiDAR images using the YOLOv8 neural network. The proposed approach uses novel pre-processing of the raw LiDAR data and dataset augmentation methods to produce trained YOLOv8 networks to improve accuracy, precision, and recall for the segmentation of two important Maya structure types: annular structures and platforms. The results show an IoU performance of 0.842 for platforms and 0.809 for annular structures which outperform existing approaches. Further, analysis via domain experts considers the topological consistency of segmented regions and performance vs. area providing important insights. The approach automates time-consuming LiDAR image labeling which significantly accelerates accurate analysis of historical landscapes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2403.05773
- https://arxiv.org/pdf/2403.05773
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392736800
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392736800Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2403.05773Digital Object Identifier
- Title
-
Unveiling Ancient Maya Settlements Using Aerial LiDAR Image SegmentationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-09Full publication date if available
- Authors
-
Jincheng Zhang, William M. Ringle, Andrew WillisList of authors in order
- Landing page
-
https://arxiv.org/abs/2403.05773Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2403.05773Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2403.05773Direct OA link when available
- Concepts
-
Maya, Human settlement, Lidar, Aerial image, Segmentation, Aerial imagery, Geography, JADE (particle detector), Artificial intelligence, Computer vision, Archaeology, Cartography, Remote sensing, Image (mathematics), Computer science, Physics, Particle physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392736800 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2403.05773 |
| ids.doi | https://doi.org/10.48550/arxiv.2403.05773 |
| ids.openalex | https://openalex.org/W4392736800 |
| fwci | |
| type | preprint |
| title | Unveiling Ancient Maya Settlements Using Aerial LiDAR Image Segmentation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12364 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1912 |
| topics[0].subfield.display_name | Space and Planetary Science |
| topics[0].display_name | Archaeological Research and Protection |
| topics[1].id | https://openalex.org/T12981 |
| topics[1].field.id | https://openalex.org/fields/12 |
| topics[1].field.display_name | Arts and Humanities |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1206 |
| topics[1].subfield.display_name | Conservation |
| topics[1].display_name | Conservation Techniques and Studies |
| topics[2].id | https://openalex.org/T10087 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9896000027656555 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1911 |
| topics[2].subfield.display_name | Paleontology |
| topics[2].display_name | Archaeology and ancient environmental studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C179335157 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7875204086303711 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q223890 |
| concepts[0].display_name | Maya |
| concepts[1].id | https://openalex.org/C16678853 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6740708351135254 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q486972 |
| concepts[1].display_name | Human settlement |
| concepts[2].id | https://openalex.org/C51399673 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6364744901657104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[2].display_name | Lidar |
| concepts[3].id | https://openalex.org/C2776429412 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5818999409675598 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4688011 |
| concepts[3].display_name | Aerial image |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5148479342460632 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C2987819851 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5134421586990356 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q191839 |
| concepts[5].display_name | Aerial imagery |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4604218006134033 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C2780032874 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4513959288597107 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q16948557 |
| concepts[7].display_name | JADE (particle detector) |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4052813947200775 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.37744656205177307 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C166957645 |
| concepts[10].level | 1 |
| concepts[10].score | 0.36269915103912354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[10].display_name | Archaeology |
| concepts[11].id | https://openalex.org/C58640448 |
| concepts[11].level | 1 |
| concepts[11].score | 0.35121220350265503 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[11].display_name | Cartography |
| concepts[12].id | https://openalex.org/C62649853 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3454180955886841 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[12].display_name | Remote sensing |
| concepts[13].id | https://openalex.org/C115961682 |
| concepts[13].level | 2 |
| concepts[13].score | 0.3093620538711548 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[13].display_name | Image (mathematics) |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.22256696224212646 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C109214941 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[16].display_name | Particle physics |
| keywords[0].id | https://openalex.org/keywords/maya |
| keywords[0].score | 0.7875204086303711 |
| keywords[0].display_name | Maya |
| keywords[1].id | https://openalex.org/keywords/human-settlement |
| keywords[1].score | 0.6740708351135254 |
| keywords[1].display_name | Human settlement |
| keywords[2].id | https://openalex.org/keywords/lidar |
| keywords[2].score | 0.6364744901657104 |
| keywords[2].display_name | Lidar |
| keywords[3].id | https://openalex.org/keywords/aerial-image |
| keywords[3].score | 0.5818999409675598 |
| keywords[3].display_name | Aerial image |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5148479342460632 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/aerial-imagery |
| keywords[5].score | 0.5134421586990356 |
| keywords[5].display_name | Aerial imagery |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.4604218006134033 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/jade |
| keywords[7].score | 0.4513959288597107 |
| keywords[7].display_name | JADE (particle detector) |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.4052813947200775 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.37744656205177307 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/archaeology |
| keywords[10].score | 0.36269915103912354 |
| keywords[10].display_name | Archaeology |
| keywords[11].id | https://openalex.org/keywords/cartography |
| keywords[11].score | 0.35121220350265503 |
| keywords[11].display_name | Cartography |
| keywords[12].id | https://openalex.org/keywords/remote-sensing |
| keywords[12].score | 0.3454180955886841 |
| keywords[12].display_name | Remote sensing |
| keywords[13].id | https://openalex.org/keywords/image |
| keywords[13].score | 0.3093620538711548 |
| keywords[13].display_name | Image (mathematics) |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.22256696224212646 |
| keywords[14].display_name | Computer science |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2403.05773 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2403.05773 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2403.05773 |
| locations[1].id | doi:10.48550/arxiv.2403.05773 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2403.05773 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5100638051 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3319-2478 |
| authorships[0].author.display_name | Jincheng Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Jincheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079878625 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5073-7148 |
| authorships[1].author.display_name | William M. Ringle |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ringle, William |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5022062855 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0756-2132 |
| authorships[2].author.display_name | Andrew Willis |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Willis, Andrew R. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2403.05773 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unveiling Ancient Maya Settlements Using Aerial LiDAR Image Segmentation |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12364 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1912 |
| primary_topic.subfield.display_name | Space and Planetary Science |
| primary_topic.display_name | Archaeological Research and Protection |
| related_works | https://openalex.org/W4283696875, https://openalex.org/W3110585990, https://openalex.org/W4385767632, https://openalex.org/W2898690910, https://openalex.org/W2784132289, https://openalex.org/W4286697184, https://openalex.org/W2889700547, https://openalex.org/W2889866244, https://openalex.org/W3034139063, https://openalex.org/W2593313455 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2403.05773 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2403.05773 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2403.05773 |
| primary_location.id | pmh:oai:arXiv.org:2403.05773 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2403.05773 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2403.05773 |
| publication_date | 2024-03-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.an | 84 |
| abstract_inverted_index.in | 5, 21, 33 |
| abstract_inverted_index.is | 8 |
| abstract_inverted_index.of | 2, 48, 71, 87, 109, 131 |
| abstract_inverted_index.to | 57, 62 |
| abstract_inverted_index.IoU | 85 |
| abstract_inverted_index.The | 42, 81, 119 |
| abstract_inverted_index.and | 11, 53, 66, 79, 91, 112 |
| abstract_inverted_index.for | 28, 68, 89, 93 |
| abstract_inverted_index.how | 18 |
| abstract_inverted_index.raw | 50 |
| abstract_inverted_index.the | 38, 49, 69, 106 |
| abstract_inverted_index.two | 72 |
| abstract_inverted_index.via | 102 |
| abstract_inverted_index.vs. | 114 |
| abstract_inverted_index.(DL) | 24 |
| abstract_inverted_index.Maya | 74 |
| abstract_inverted_index.This | 15 |
| abstract_inverted_index.area | 115 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.deep | 22 |
| abstract_inverted_index.show | 83 |
| abstract_inverted_index.uses | 45 |
| abstract_inverted_index.0.809 | 92 |
| abstract_inverted_index.0.842 | 88 |
| abstract_inverted_index.LiDAR | 6, 35, 51, 123 |
| abstract_inverted_index.image | 124 |
| abstract_inverted_index.novel | 46 |
| abstract_inverted_index.paper | 16 |
| abstract_inverted_index.shows | 17 |
| abstract_inverted_index.using | 37 |
| abstract_inverted_index.which | 96, 126 |
| abstract_inverted_index.Manual | 0 |
| abstract_inverted_index.YOLOv8 | 39, 60 |
| abstract_inverted_index.aerial | 34 |
| abstract_inverted_index.domain | 103 |
| abstract_inverted_index.images | 36 |
| abstract_inverted_index.neural | 40 |
| abstract_inverted_index.recall | 67 |
| abstract_inverted_index.recent | 19 |
| abstract_inverted_index.types: | 76 |
| abstract_inverted_index.annular | 77, 94 |
| abstract_inverted_index.costly, | 10 |
| abstract_inverted_index.dataset | 54 |
| abstract_inverted_index.experts | 104 |
| abstract_inverted_index.imagery | 7 |
| abstract_inverted_index.improve | 63 |
| abstract_inverted_index.methods | 56 |
| abstract_inverted_index.present | 25 |
| abstract_inverted_index.produce | 58 |
| abstract_inverted_index.regions | 111 |
| abstract_inverted_index.results | 82 |
| abstract_inverted_index.trained | 59 |
| abstract_inverted_index.Further, | 100 |
| abstract_inverted_index.accurate | 129 |
| abstract_inverted_index.analysis | 101, 130 |
| abstract_inverted_index.approach | 44, 120 |
| abstract_inverted_index.existing | 98 |
| abstract_inverted_index.features | 4 |
| abstract_inverted_index.labeling | 125 |
| abstract_inverted_index.learning | 23 |
| abstract_inverted_index.network. | 41 |
| abstract_inverted_index.networks | 61 |
| abstract_inverted_index.proposed | 43 |
| abstract_inverted_index.requires | 12 |
| abstract_inverted_index.accuracy, | 64 |
| abstract_inverted_index.automates | 121 |
| abstract_inverted_index.considers | 105 |
| abstract_inverted_index.efficient | 26 |
| abstract_inverted_index.important | 73, 117 |
| abstract_inverted_index.insights. | 118 |
| abstract_inverted_index.platforms | 90 |
| abstract_inverted_index.providing | 116 |
| abstract_inverted_index.segmented | 110 |
| abstract_inverted_index.solutions | 27 |
| abstract_inverted_index.structure | 75 |
| abstract_inverted_index.accurately | 29 |
| abstract_inverted_index.expertise. | 14 |
| abstract_inverted_index.historical | 132 |
| abstract_inverted_index.outperform | 97 |
| abstract_inverted_index.platforms. | 80 |
| abstract_inverted_index.precision, | 65 |
| abstract_inverted_index.segmenting | 30 |
| abstract_inverted_index.structures | 32, 78, 95 |
| abstract_inverted_index.accelerates | 128 |
| abstract_inverted_index.approaches. | 99 |
| abstract_inverted_index.consistency | 108 |
| abstract_inverted_index.landscapes. | 133 |
| abstract_inverted_index.performance | 86, 113 |
| abstract_inverted_index.topological | 107 |
| abstract_inverted_index.advancements | 20 |
| abstract_inverted_index.augmentation | 55 |
| abstract_inverted_index.segmentation | 70 |
| abstract_inverted_index.significantly | 127 |
| abstract_inverted_index.archaeological | 3, 13, 31 |
| abstract_inverted_index.identification | 1 |
| abstract_inverted_index.pre-processing | 47 |
| abstract_inverted_index.time-consuming | 122 |
| abstract_inverted_index.labor-intensive, | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |