Unveiling optimal molecular features for hERG insights with automatic machine learning Article Swipe
Congying Xu
,
Youjun Xu
,
Zi'ang Hu
,
Xinyi Zhao
,
Weixin Xie
,
Wei-Ren Chen
,
Jianfeng Pei
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jpha.2025.101411
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.jpha.2025.101411
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jpha.2025.101411
- OA Status
- gold
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412643855
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412643855Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jpha.2025.101411Digital Object Identifier
- Title
-
Unveiling optimal molecular features for hERG insights with automatic machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-24Full publication date if available
- Authors
-
Congying Xu, Youjun Xu, Zi'ang Hu, Xinyi Zhao, Weixin Xie, Wei-Ren Chen, Jianfeng PeiList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jpha.2025.101411Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jpha.2025.101411Direct OA link when available
- Concepts
-
hERG, Chemistry, Artificial intelligence, Computational biology, Machine learning, Computer science, Biophysics, Potassium channel, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412643855 |
|---|---|
| doi | https://doi.org/10.1016/j.jpha.2025.101411 |
| ids.doi | https://doi.org/10.1016/j.jpha.2025.101411 |
| ids.openalex | https://openalex.org/W4412643855 |
| fwci | 0.0 |
| type | article |
| title | Unveiling optimal molecular features for hERG insights with automatic machine learning |
| awards[0].id | https://openalex.org/G6707253574 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 220330010 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2329993151 |
| awards[1].funder_id | https://openalex.org/F4320336601 |
| awards[1].display_name | |
| awards[1].funder_award_id | 202303a07020009 |
| awards[1].funder_display_name | Major Science and Technology Projects in Anhui Province |
| awards[2].id | https://openalex.org/G2030198899 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2023YFF1205103 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | 12 |
| biblio.volume | 15 |
| biblio.last_page | 101411 |
| biblio.first_page | 101411 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9980000257492065 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10044 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9757999777793884 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Protein Structure and Dynamics |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| funders[2].id | https://openalex.org/F4320336601 |
| funders[2].ror | |
| funders[2].display_name | Major Science and Technology Projects in Anhui Province |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | USD |
| apc_list.value_usd | 1800 |
| apc_paid.value | 1800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1800 |
| concepts[0].id | https://openalex.org/C2779362680 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9193336367607117 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q905000 |
| concepts[0].display_name | hERG |
| concepts[1].id | https://openalex.org/C185592680 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8816895484924316 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[1].display_name | Chemistry |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3960973620414734 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C70721500 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3639528155326843 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[3].display_name | Computational biology |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3360899090766907 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.15640300512313843 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C12554922 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1439397633075714 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7100 |
| concepts[6].display_name | Biophysics |
| concepts[7].id | https://openalex.org/C83743174 |
| concepts[7].level | 2 |
| concepts[7].score | 0.10410445928573608 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q423778 |
| concepts[7].display_name | Potassium channel |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/herg |
| keywords[0].score | 0.9193336367607117 |
| keywords[0].display_name | hERG |
| keywords[1].id | https://openalex.org/keywords/chemistry |
| keywords[1].score | 0.8816895484924316 |
| keywords[1].display_name | Chemistry |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.3960973620414734 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computational-biology |
| keywords[3].score | 0.3639528155326843 |
| keywords[3].display_name | Computational biology |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.3360899090766907 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.15640300512313843 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/biophysics |
| keywords[6].score | 0.1439397633075714 |
| keywords[6].display_name | Biophysics |
| keywords[7].id | https://openalex.org/keywords/potassium-channel |
| keywords[7].score | 0.10410445928573608 |
| keywords[7].display_name | Potassium channel |
| language | en |
| locations[0].id | doi:10.1016/j.jpha.2025.101411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2765050281 |
| locations[0].source.issn | 2095-1779, 2214-0883 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2095-1779 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Pharmaceutical Analysis |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Pharmaceutical Analysis |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jpha.2025.101411 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5110623639 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Congying Xu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Congying Xu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5004269850 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3086-9781 |
| authorships[1].author.display_name | Youjun Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Youjun Xu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5006347549 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zi'ang Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ziang Hu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113667563 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Xinyi Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xinyi Zhao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100959071 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Weixin Xie |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Weixin Xie |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102006171 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9698-3587 |
| authorships[5].author.display_name | Wei-Ren Chen |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Weiren Chen |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5047704083 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8482-1185 |
| authorships[6].author.display_name | Jianfeng Pei |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jianfeng Pei |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jpha.2025.101411 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Unveiling optimal molecular features for hERG insights with automatic machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-12T23:16:27.785689 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.jpha.2025.101411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2765050281 |
| best_oa_location.source.issn | 2095-1779, 2214-0883 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2095-1779 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Pharmaceutical Analysis |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Pharmaceutical Analysis |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jpha.2025.101411 |
| primary_location.id | doi:10.1016/j.jpha.2025.101411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2765050281 |
| primary_location.source.issn | 2095-1779, 2214-0883 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2095-1779 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Pharmaceutical Analysis |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Pharmaceutical Analysis |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jpha.2025.101411 |
| publication_date | 2025-07-24 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2968734407, https://openalex.org/W4390221451, https://openalex.org/W3007309629, https://openalex.org/W4378212018, https://openalex.org/W3109916301, https://openalex.org/W6601102799, https://openalex.org/W1988037271, https://openalex.org/W3109675364, https://openalex.org/W3193786816, https://openalex.org/W3004468049, https://openalex.org/W2096864392, https://openalex.org/W2096541451, https://openalex.org/W3140287828, https://openalex.org/W4390590760, https://openalex.org/W4392095498, https://openalex.org/W4390511714, https://openalex.org/W4389083050, https://openalex.org/W4384277086, https://openalex.org/W4318919031, https://openalex.org/W4315436606, https://openalex.org/W4387798176, https://openalex.org/W4311670574, https://openalex.org/W2221269644, https://openalex.org/W2791355014, https://openalex.org/W4224220091, https://openalex.org/W6781932242, https://openalex.org/W4386448416, https://openalex.org/W4313485037, https://openalex.org/W2295598076, https://openalex.org/W4226054611, https://openalex.org/W1971849220, https://openalex.org/W4281484410, https://openalex.org/W6769447685, https://openalex.org/W2066273100, https://openalex.org/W2123676318, https://openalex.org/W1972156862, https://openalex.org/W2033495141, https://openalex.org/W1757990252, https://openalex.org/W2947920041, https://openalex.org/W2752149732, https://openalex.org/W2160305962, https://openalex.org/W3154258817, https://openalex.org/W4223568267, https://openalex.org/W4304193341, https://openalex.org/W3080555959, https://openalex.org/W2980489661 |
| referenced_works_count | 46 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.29029855 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |