Urban Radiance Field Representation with Deformable Neural Mesh Primitives Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2307.10776
Neural Radiance Fields (NeRFs) have achieved great success in the past few years. However, most current methods still require intensive resources due to ray marching-based rendering. To construct urban-level radiance fields efficiently, we design Deformable Neural Mesh Primitive~(DNMP), and propose to parameterize the entire scene with such primitives. The DNMP is a flexible and compact neural variant of classic mesh representation, which enjoys both the efficiency of rasterization-based rendering and the powerful neural representation capability for photo-realistic image synthesis. Specifically, a DNMP consists of a set of connected deformable mesh vertices with paired vertex features to parameterize the geometry and radiance information of a local area. To constrain the degree of freedom for optimization and lower the storage budgets, we enforce the shape of each primitive to be decoded from a relatively low-dimensional latent space. The rendering colors are decoded from the vertex features (interpolated with rasterization) by a view-dependent MLP. The DNMP provides a new paradigm for urban-level scene representation with appealing properties: $(1)$ High-quality rendering. Our method achieves leading performance for novel view synthesis in urban scenarios. $(2)$ Low computational costs. Our representation enables fast rendering (2.07ms/1k pixels) and low peak memory usage (110MB/1k pixels). We also present a lightweight version that can run 33$\times$ faster than vanilla NeRFs, and comparable to the highly-optimized Instant-NGP (0.61 vs 0.71ms/1k pixels). Project page: \href{https://dnmp.github.io/}{https://dnmp.github.io/}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2307.10776
- https://arxiv.org/pdf/2307.10776
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385004064
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385004064Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2307.10776Digital Object Identifier
- Title
-
Urban Radiance Field Representation with Deformable Neural Mesh PrimitivesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-20Full publication date if available
- Authors
-
Fan Lü, Yan Xu, Guang Chen, Hongsheng Li, Kwan-Yee Lin, Changjun JiangList of authors in order
- Landing page
-
https://arxiv.org/abs/2307.10776Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2307.10776Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2307.10776Direct OA link when available
- Concepts
-
Radiance, Rendering (computer graphics), Computer science, Pixel, Artificial intelligence, Vertex (graph theory), Computer vision, Computer graphics (images), Algorithm, Theoretical computer science, Remote sensing, Graph, GeographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385004064 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2307.10776 |
| ids.doi | https://doi.org/10.48550/arxiv.2307.10776 |
| ids.openalex | https://openalex.org/W4385004064 |
| fwci | |
| type | preprint |
| title | Urban Radiance Field Representation with Deformable Neural Mesh Primitives |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10481 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983999729156494 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1704 |
| topics[0].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[0].display_name | Computer Graphics and Visualization Techniques |
| topics[1].id | https://openalex.org/T10531 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9979000091552734 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Vision and Imaging |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9939000010490417 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C23690007 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8884267807006836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1411145 |
| concepts[0].display_name | Radiance |
| concepts[1].id | https://openalex.org/C205711294 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7916786074638367 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q176953 |
| concepts[1].display_name | Rendering (computer graphics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7203248143196106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C160633673 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7076111435890198 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[3].display_name | Pixel |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5166630744934082 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C80899671 |
| concepts[5].level | 3 |
| concepts[5].score | 0.48554298281669617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1304193 |
| concepts[5].display_name | Vertex (graph theory) |
| concepts[6].id | https://openalex.org/C31972630 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4169028401374817 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[6].display_name | Computer vision |
| concepts[7].id | https://openalex.org/C121684516 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3964959681034088 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[7].display_name | Computer graphics (images) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33339300751686096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2670169472694397 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16252443194389343 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C132525143 |
| concepts[11].level | 2 |
| concepts[11].score | 0.15598109364509583 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[11].display_name | Graph |
| concepts[12].id | https://openalex.org/C205649164 |
| concepts[12].level | 0 |
| concepts[12].score | 0.14604395627975464 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[12].display_name | Geography |
| keywords[0].id | https://openalex.org/keywords/radiance |
| keywords[0].score | 0.8884267807006836 |
| keywords[0].display_name | Radiance |
| keywords[1].id | https://openalex.org/keywords/rendering |
| keywords[1].score | 0.7916786074638367 |
| keywords[1].display_name | Rendering (computer graphics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7203248143196106 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/pixel |
| keywords[3].score | 0.7076111435890198 |
| keywords[3].display_name | Pixel |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5166630744934082 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/vertex |
| keywords[5].score | 0.48554298281669617 |
| keywords[5].display_name | Vertex (graph theory) |
| keywords[6].id | https://openalex.org/keywords/computer-vision |
| keywords[6].score | 0.4169028401374817 |
| keywords[6].display_name | Computer vision |
| keywords[7].id | https://openalex.org/keywords/computer-graphics |
| keywords[7].score | 0.3964959681034088 |
| keywords[7].display_name | Computer graphics (images) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.33339300751686096 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.2670169472694397 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.16252443194389343 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/graph |
| keywords[11].score | 0.15598109364509583 |
| keywords[11].display_name | Graph |
| keywords[12].id | https://openalex.org/keywords/geography |
| keywords[12].score | 0.14604395627975464 |
| keywords[12].display_name | Geography |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2307.10776 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2307.10776 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2307.10776 |
| locations[1].id | doi:10.48550/arxiv.2307.10776 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2307.10776 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080310406 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4932-3850 |
| authorships[0].author.display_name | Fan Lü |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lu, Fan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101472412 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yan Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Yan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100323037 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7416-592X |
| authorships[2].author.display_name | Guang Chen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen, Guang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5114506692 |
| authorships[3].author.orcid | https://orcid.org/0009-0003-4821-5051 |
| authorships[3].author.display_name | Hongsheng Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Hongsheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046965918 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0175-6398 |
| authorships[4].author.display_name | Kwan-Yee Lin |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Lin, Kwan-Yee |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5066099338 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-0637-9317 |
| authorships[5].author.display_name | Changjun Jiang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jiang, Changjun |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2307.10776 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Urban Radiance Field Representation with Deformable Neural Mesh Primitives |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10481 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983999729156494 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1704 |
| primary_topic.subfield.display_name | Computer Graphics and Computer-Aided Design |
| primary_topic.display_name | Computer Graphics and Visualization Techniques |
| related_works | https://openalex.org/W291250033, https://openalex.org/W2035757446, https://openalex.org/W2008385118, https://openalex.org/W880955280, https://openalex.org/W2106647072, https://openalex.org/W4246858109, https://openalex.org/W2172753644, https://openalex.org/W54172855, https://openalex.org/W2170209930, https://openalex.org/W2046782623 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2307.10776 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2307.10776 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2307.10776 |
| primary_location.id | pmh:oai:arXiv.org:2307.10776 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2307.10776 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2307.10776 |
| publication_date | 2023-07-20 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 51, 80, 84, 103, 130, 148, 154, 200 |
| abstract_inverted_index.To | 26, 106 |
| abstract_inverted_index.We | 197 |
| abstract_inverted_index.be | 127 |
| abstract_inverted_index.by | 147 |
| abstract_inverted_index.in | 8, 176 |
| abstract_inverted_index.is | 50 |
| abstract_inverted_index.of | 57, 66, 83, 86, 102, 110, 123 |
| abstract_inverted_index.to | 22, 40, 95, 126, 213 |
| abstract_inverted_index.vs | 218 |
| abstract_inverted_index.we | 32, 119 |
| abstract_inverted_index.Low | 180 |
| abstract_inverted_index.Our | 167, 183 |
| abstract_inverted_index.The | 48, 135, 151 |
| abstract_inverted_index.and | 38, 53, 69, 99, 114, 190, 211 |
| abstract_inverted_index.are | 138 |
| abstract_inverted_index.can | 204 |
| abstract_inverted_index.due | 21 |
| abstract_inverted_index.few | 11 |
| abstract_inverted_index.for | 75, 112, 157, 172 |
| abstract_inverted_index.low | 191 |
| abstract_inverted_index.new | 155 |
| abstract_inverted_index.ray | 23 |
| abstract_inverted_index.run | 205 |
| abstract_inverted_index.set | 85 |
| abstract_inverted_index.the | 9, 42, 64, 70, 97, 108, 116, 121, 141, 214 |
| abstract_inverted_index.DNMP | 49, 81, 152 |
| abstract_inverted_index.MLP. | 150 |
| abstract_inverted_index.Mesh | 36 |
| abstract_inverted_index.also | 198 |
| abstract_inverted_index.both | 63 |
| abstract_inverted_index.each | 124 |
| abstract_inverted_index.fast | 186 |
| abstract_inverted_index.from | 129, 140 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.mesh | 59, 89 |
| abstract_inverted_index.most | 14 |
| abstract_inverted_index.past | 10 |
| abstract_inverted_index.peak | 192 |
| abstract_inverted_index.such | 46 |
| abstract_inverted_index.than | 208 |
| abstract_inverted_index.that | 203 |
| abstract_inverted_index.view | 174 |
| abstract_inverted_index.with | 45, 91, 145, 161 |
| abstract_inverted_index.$(1)$ | 164 |
| abstract_inverted_index.$(2)$ | 179 |
| abstract_inverted_index.(0.61 | 217 |
| abstract_inverted_index.area. | 105 |
| abstract_inverted_index.great | 6 |
| abstract_inverted_index.image | 77 |
| abstract_inverted_index.local | 104 |
| abstract_inverted_index.lower | 115 |
| abstract_inverted_index.novel | 173 |
| abstract_inverted_index.page: | 222 |
| abstract_inverted_index.scene | 44, 159 |
| abstract_inverted_index.shape | 122 |
| abstract_inverted_index.still | 17 |
| abstract_inverted_index.urban | 177 |
| abstract_inverted_index.usage | 194 |
| abstract_inverted_index.which | 61 |
| abstract_inverted_index.Fields | 2 |
| abstract_inverted_index.NeRFs, | 210 |
| abstract_inverted_index.Neural | 0, 35 |
| abstract_inverted_index.colors | 137 |
| abstract_inverted_index.costs. | 182 |
| abstract_inverted_index.degree | 109 |
| abstract_inverted_index.design | 33 |
| abstract_inverted_index.enjoys | 62 |
| abstract_inverted_index.entire | 43 |
| abstract_inverted_index.faster | 207 |
| abstract_inverted_index.fields | 30 |
| abstract_inverted_index.latent | 133 |
| abstract_inverted_index.memory | 193 |
| abstract_inverted_index.method | 168 |
| abstract_inverted_index.neural | 55, 72 |
| abstract_inverted_index.paired | 92 |
| abstract_inverted_index.space. | 134 |
| abstract_inverted_index.vertex | 93, 142 |
| abstract_inverted_index.years. | 12 |
| abstract_inverted_index.(NeRFs) | 3 |
| abstract_inverted_index.Project | 221 |
| abstract_inverted_index.classic | 58 |
| abstract_inverted_index.compact | 54 |
| abstract_inverted_index.current | 15 |
| abstract_inverted_index.decoded | 128, 139 |
| abstract_inverted_index.enables | 185 |
| abstract_inverted_index.enforce | 120 |
| abstract_inverted_index.freedom | 111 |
| abstract_inverted_index.leading | 170 |
| abstract_inverted_index.methods | 16 |
| abstract_inverted_index.pixels) | 189 |
| abstract_inverted_index.present | 199 |
| abstract_inverted_index.propose | 39 |
| abstract_inverted_index.require | 18 |
| abstract_inverted_index.storage | 117 |
| abstract_inverted_index.success | 7 |
| abstract_inverted_index.vanilla | 209 |
| abstract_inverted_index.variant | 56 |
| abstract_inverted_index.version | 202 |
| abstract_inverted_index.However, | 13 |
| abstract_inverted_index.Radiance | 1 |
| abstract_inverted_index.achieved | 5 |
| abstract_inverted_index.achieves | 169 |
| abstract_inverted_index.budgets, | 118 |
| abstract_inverted_index.consists | 82 |
| abstract_inverted_index.features | 94, 143 |
| abstract_inverted_index.flexible | 52 |
| abstract_inverted_index.geometry | 98 |
| abstract_inverted_index.paradigm | 156 |
| abstract_inverted_index.pixels). | 196, 220 |
| abstract_inverted_index.powerful | 71 |
| abstract_inverted_index.provides | 153 |
| abstract_inverted_index.radiance | 29, 100 |
| abstract_inverted_index.vertices | 90 |
| abstract_inverted_index.(110MB/1k | 195 |
| abstract_inverted_index.0.71ms/1k | 219 |
| abstract_inverted_index.appealing | 162 |
| abstract_inverted_index.connected | 87 |
| abstract_inverted_index.constrain | 107 |
| abstract_inverted_index.construct | 27 |
| abstract_inverted_index.intensive | 19 |
| abstract_inverted_index.primitive | 125 |
| abstract_inverted_index.rendering | 68, 136, 187 |
| abstract_inverted_index.resources | 20 |
| abstract_inverted_index.synthesis | 175 |
| abstract_inverted_index.(2.07ms/1k | 188 |
| abstract_inverted_index.33$\times$ | 206 |
| abstract_inverted_index.Deformable | 34 |
| abstract_inverted_index.capability | 74 |
| abstract_inverted_index.comparable | 212 |
| abstract_inverted_index.deformable | 88 |
| abstract_inverted_index.efficiency | 65 |
| abstract_inverted_index.relatively | 131 |
| abstract_inverted_index.rendering. | 25, 166 |
| abstract_inverted_index.scenarios. | 178 |
| abstract_inverted_index.synthesis. | 78 |
| abstract_inverted_index.Instant-NGP | 216 |
| abstract_inverted_index.information | 101 |
| abstract_inverted_index.lightweight | 201 |
| abstract_inverted_index.performance | 171 |
| abstract_inverted_index.primitives. | 47 |
| abstract_inverted_index.properties: | 163 |
| abstract_inverted_index.urban-level | 28, 158 |
| abstract_inverted_index.High-quality | 165 |
| abstract_inverted_index.efficiently, | 31 |
| abstract_inverted_index.optimization | 113 |
| abstract_inverted_index.parameterize | 41, 96 |
| abstract_inverted_index.(interpolated | 144 |
| abstract_inverted_index.Specifically, | 79 |
| abstract_inverted_index.computational | 181 |
| abstract_inverted_index.marching-based | 24 |
| abstract_inverted_index.rasterization) | 146 |
| abstract_inverted_index.representation | 73, 160, 184 |
| abstract_inverted_index.view-dependent | 149 |
| abstract_inverted_index.low-dimensional | 132 |
| abstract_inverted_index.photo-realistic | 76 |
| abstract_inverted_index.representation, | 60 |
| abstract_inverted_index.highly-optimized | 215 |
| abstract_inverted_index.Primitive~(DNMP), | 37 |
| abstract_inverted_index.rasterization-based | 67 |
| abstract_inverted_index.\href{https://dnmp.github.io/}{https://dnmp.github.io/}. | 223 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |