Use of social media data for disease based social network analysis and network modeling: A Systematic Review Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.14455857
Burden due to infectious and noncommunicable disease is increasing at an alarming rate. Social media usage is growing rapidly and has become the new norm of communication. It is imperative to examine what is being discussed in the social media about diseases or conditions and the characteristics of the network of people involved in discussion. The objective is to assess the tools and techniques used to study social media disease networks using network analysis and network modeling. PubMed and IEEEXplore were searched from 2009 to 2020 and included 30 studies after screening and analysis. Twitter, QuitNet, and disease-specific online forums were widely used to study communications on various health conditions. Most of the studies have performed content analysis and network analysis, whereas network modeling has been done in six studies. Posts on cancer, COVID-19, and smoking have been widely studied. Tools and techniques used for network analysis are listed. Health-related social media data can be leveraged for network analysis. Network modeling technique would help to identify the structural factors associated with the affiliation of the disease networks, which is scarcely utilized. This will help public health professionals to tailor targeted interventions.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.14455857
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4394387370
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4394387370Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.14455857Digital Object Identifier
- Title
-
Use of social media data for disease based social network analysis and network modeling: A Systematic ReviewWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-01-01Full publication date if available
- Authors
-
Thilagavathi Ramamoorthy, Dhivya Karmegam, Bagavandas MappillairajuList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.14455857Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.14455857Direct OA link when available
- Concepts
-
Social network analysis, Social network (sociolinguistics), Data science, Social media, Computer science, World Wide WebTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4394387370 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.14455857 |
| ids.doi | https://doi.org/10.6084/m9.figshare.14455857 |
| ids.openalex | https://openalex.org/W4394387370 |
| fwci | 0.0 |
| type | review |
| title | Use of social media data for disease based social network analysis and network modeling: A Systematic Review |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12027 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.871399998664856 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3306 |
| topics[0].subfield.display_name | Health |
| topics[0].display_name | Social Media in Health Education |
| topics[1].id | https://openalex.org/T10609 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.7797999978065491 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Digital Marketing and Social Media |
| topics[2].id | https://openalex.org/T10064 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.7379999756813049 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3109 |
| topics[2].subfield.display_name | Statistical and Nonlinear Physics |
| topics[2].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C114713312 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7009737491607666 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7551269 |
| concepts[0].display_name | Social network analysis |
| concepts[1].id | https://openalex.org/C4727928 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5991935729980469 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17164759 |
| concepts[1].display_name | Social network (sociolinguistics) |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5825726985931396 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C518677369 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5144320130348206 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q202833 |
| concepts[3].display_name | Social media |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.47038590908050537 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C136764020 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2409849464893341 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[5].display_name | World Wide Web |
| keywords[0].id | https://openalex.org/keywords/social-network-analysis |
| keywords[0].score | 0.7009737491607666 |
| keywords[0].display_name | Social network analysis |
| keywords[1].id | https://openalex.org/keywords/social-network |
| keywords[1].score | 0.5991935729980469 |
| keywords[1].display_name | Social network (sociolinguistics) |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.5825726985931396 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/social-media |
| keywords[3].score | 0.5144320130348206 |
| keywords[3].display_name | Social media |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.47038590908050537 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/world-wide-web |
| keywords[5].score | 0.2409849464893341 |
| keywords[5].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.14455857 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.14455857 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5003085903 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Thilagavathi Ramamoorthy |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thilagavathi Ramamoorthy |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074033046 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3307-8704 |
| authorships[1].author.display_name | Dhivya Karmegam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dhivya Karmegam |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5040659959 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4794-6250 |
| authorships[2].author.display_name | Bagavandas Mappillairaju |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bagavandas Mappillairaju |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.14455857 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Use of social media data for disease based social network analysis and network modeling: A Systematic Review |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12027 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.871399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3306 |
| primary_topic.subfield.display_name | Health |
| primary_topic.display_name | Social Media in Health Education |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2120116197, https://openalex.org/W4320063274, https://openalex.org/W159653547, https://openalex.org/W2952662149, https://openalex.org/W3151710375, https://openalex.org/W2793616590, https://openalex.org/W2183090405, https://openalex.org/W2065835655, https://openalex.org/W2075666982 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.14455857 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14455857 |
| primary_location.id | doi:10.6084/m9.figshare.14455857 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.14455857 |
| publication_date | 2021-01-01 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.30 | 88 |
| abstract_inverted_index.It | 27 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.at | 9 |
| abstract_inverted_index.be | 154 |
| abstract_inverted_index.in | 36, 53, 127 |
| abstract_inverted_index.is | 7, 16, 28, 33, 57, 178 |
| abstract_inverted_index.of | 25, 47, 50, 111, 173 |
| abstract_inverted_index.on | 106, 131 |
| abstract_inverted_index.or | 42 |
| abstract_inverted_index.to | 2, 30, 58, 65, 84, 103, 164, 187 |
| abstract_inverted_index.The | 55 |
| abstract_inverted_index.and | 4, 19, 44, 62, 74, 78, 86, 92, 96, 118, 134, 141 |
| abstract_inverted_index.are | 147 |
| abstract_inverted_index.can | 153 |
| abstract_inverted_index.due | 1 |
| abstract_inverted_index.for | 144, 156 |
| abstract_inverted_index.has | 20, 124 |
| abstract_inverted_index.new | 23 |
| abstract_inverted_index.six | 128 |
| abstract_inverted_index.the | 22, 37, 45, 48, 60, 112, 166, 171, 174 |
| abstract_inverted_index.2009 | 83 |
| abstract_inverted_index.2020 | 85 |
| abstract_inverted_index.Most | 110 |
| abstract_inverted_index.This | 181 |
| abstract_inverted_index.been | 125, 137 |
| abstract_inverted_index.data | 152 |
| abstract_inverted_index.done | 126 |
| abstract_inverted_index.from | 82 |
| abstract_inverted_index.have | 114, 136 |
| abstract_inverted_index.help | 163, 183 |
| abstract_inverted_index.norm | 24 |
| abstract_inverted_index.used | 64, 102, 143 |
| abstract_inverted_index.were | 80, 100 |
| abstract_inverted_index.what | 32 |
| abstract_inverted_index.will | 182 |
| abstract_inverted_index.with | 170 |
| abstract_inverted_index.Posts | 130 |
| abstract_inverted_index.Tools | 140 |
| abstract_inverted_index.about | 40 |
| abstract_inverted_index.after | 90 |
| abstract_inverted_index.being | 34 |
| abstract_inverted_index.media | 14, 39, 68, 151 |
| abstract_inverted_index.rate. | 12 |
| abstract_inverted_index.study | 66, 104 |
| abstract_inverted_index.tools | 61 |
| abstract_inverted_index.usage | 15 |
| abstract_inverted_index.using | 71 |
| abstract_inverted_index.which | 177 |
| abstract_inverted_index.would | 162 |
| abstract_inverted_index.Burden | 0 |
| abstract_inverted_index.PubMed | 77 |
| abstract_inverted_index.Social | 13 |
| abstract_inverted_index.assess | 59 |
| abstract_inverted_index.become | 21 |
| abstract_inverted_index.forums | 99 |
| abstract_inverted_index.health | 108, 185 |
| abstract_inverted_index.online | 98 |
| abstract_inverted_index.people | 51 |
| abstract_inverted_index.public | 184 |
| abstract_inverted_index.social | 38, 67, 150 |
| abstract_inverted_index.tailor | 188 |
| abstract_inverted_index.widely | 101, 138 |
| abstract_inverted_index.Network | 159 |
| abstract_inverted_index.cancer, | 132 |
| abstract_inverted_index.content | 116 |
| abstract_inverted_index.disease | 6, 69, 175 |
| abstract_inverted_index.examine | 31 |
| abstract_inverted_index.factors | 168 |
| abstract_inverted_index.growing | 17 |
| abstract_inverted_index.listed. | 148 |
| abstract_inverted_index.network | 49, 72, 75, 119, 122, 145, 157 |
| abstract_inverted_index.rapidly | 18 |
| abstract_inverted_index.smoking | 135 |
| abstract_inverted_index.studies | 89, 113 |
| abstract_inverted_index.various | 107 |
| abstract_inverted_index.whereas | 121 |
| abstract_inverted_index.QuitNet, | 95 |
| abstract_inverted_index.Twitter, | 94 |
| abstract_inverted_index.alarming | 11 |
| abstract_inverted_index.analysis | 73, 117, 146 |
| abstract_inverted_index.diseases | 41 |
| abstract_inverted_index.identify | 165 |
| abstract_inverted_index.included | 87 |
| abstract_inverted_index.involved | 52 |
| abstract_inverted_index.modeling | 123, 160 |
| abstract_inverted_index.networks | 70 |
| abstract_inverted_index.scarcely | 179 |
| abstract_inverted_index.searched | 81 |
| abstract_inverted_index.studied. | 139 |
| abstract_inverted_index.studies. | 129 |
| abstract_inverted_index.targeted | 189 |
| abstract_inverted_index.COVID-19, | 133 |
| abstract_inverted_index.analysis, | 120 |
| abstract_inverted_index.analysis. | 93, 158 |
| abstract_inverted_index.discussed | 35 |
| abstract_inverted_index.leveraged | 155 |
| abstract_inverted_index.modeling. | 76 |
| abstract_inverted_index.networks, | 176 |
| abstract_inverted_index.objective | 56 |
| abstract_inverted_index.performed | 115 |
| abstract_inverted_index.screening | 91 |
| abstract_inverted_index.technique | 161 |
| abstract_inverted_index.utilized. | 180 |
| abstract_inverted_index.IEEEXplore | 79 |
| abstract_inverted_index.associated | 169 |
| abstract_inverted_index.conditions | 43 |
| abstract_inverted_index.imperative | 29 |
| abstract_inverted_index.increasing | 8 |
| abstract_inverted_index.infectious | 3 |
| abstract_inverted_index.structural | 167 |
| abstract_inverted_index.techniques | 63, 142 |
| abstract_inverted_index.affiliation | 172 |
| abstract_inverted_index.conditions. | 109 |
| abstract_inverted_index.discussion. | 54 |
| abstract_inverted_index.professionals | 186 |
| abstract_inverted_index.Health-related | 149 |
| abstract_inverted_index.communication. | 26 |
| abstract_inverted_index.communications | 105 |
| abstract_inverted_index.interventions. | 190 |
| abstract_inverted_index.characteristics | 46 |
| abstract_inverted_index.noncommunicable | 5 |
| abstract_inverted_index.disease-specific | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |