User-Centric Clustering Under Fairness Scheduling in Cell-Free Massive MIMO Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2305.08363
We consider fairness scheduling in a user-centric cell-free massive MIMO network, where $L$ remote radio units, each with $M$ antennas, serve $K_{\rm tot} \approx LM$ user equipments (UEs). Recent results show that the maximum network sum throughput is achieved where $K_{\rm act} \approx \frac{LM}{2}$ UEs are simultaneously active in any given time-frequency slots. However, the number of users $K_{\rm tot}$ in the network is usually much larger. This requires that users are scheduled over the time-frequency resource and achieve a certain throughput rate as an average over the slots. We impose throughput fairness among UEs with a scheduling approach aiming to maximize a concave component-wise non-decreasing network utility function of the per-user throughput rates. In cell-free user-centric networks, the pilot and cluster assignment is usually done for a given set of active users. Combined with fairness scheduling, this requires pilot and cluster reassignment at each scheduling slot, involving an enormous overhead of control signaling exchange between network entities. We propose a fixed pilot and cluster assignment scheme (independent of the scheduling decisions), which outperforms the baseline method in terms of UE throughput, while requiring much less control information exchange between network entities.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2305.08363
- https://arxiv.org/pdf/2305.08363
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4376653854
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4376653854Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2305.08363Digital Object Identifier
- Title
-
User-Centric Clustering Under Fairness Scheduling in Cell-Free Massive MIMOWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-15Full publication date if available
- Authors
-
Fabian Göttsch, Noboru Osawa, Yoshiaki Amano, Issei Kanno, Kosuke Yamazaki, Giuseppe CaireList of authors in order
- Landing page
-
https://arxiv.org/abs/2305.08363Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2305.08363Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2305.08363Direct OA link when available
- Concepts
-
Scheduling (production processes), Computer science, Maximum throughput scheduling, Computer network, Throughput, MIMO, Cluster analysis, Proportionally fair, Distributed computing, Round-robin scheduling, Dynamic priority scheduling, Wireless, Mathematical optimization, Telecommunications, Mathematics, Channel (broadcasting), Quality of service, Machine learningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4376653854 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2305.08363 |
| ids.doi | https://doi.org/10.48550/arxiv.2305.08363 |
| ids.openalex | https://openalex.org/W4376653854 |
| fwci | |
| type | preprint |
| title | User-Centric Clustering Under Fairness Scheduling in Cell-Free Massive MIMO |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10148 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced MIMO Systems Optimization |
| topics[1].id | https://openalex.org/T11409 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Advanced Wireless Network Optimization |
| topics[2].id | https://openalex.org/T10796 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Cooperative Communication and Network Coding |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C206729178 |
| concepts[0].level | 2 |
| concepts[0].score | 0.74216228723526 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2271896 |
| concepts[0].display_name | Scheduling (production processes) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7273417711257935 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C29722447 |
| concepts[2].level | 5 |
| concepts[2].score | 0.7046547532081604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17097321 |
| concepts[2].display_name | Maximum throughput scheduling |
| concepts[3].id | https://openalex.org/C31258907 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6318042278289795 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[3].display_name | Computer network |
| concepts[4].id | https://openalex.org/C157764524 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5284630656242371 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1383412 |
| concepts[4].display_name | Throughput |
| concepts[5].id | https://openalex.org/C207987634 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5211260914802551 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q176862 |
| concepts[5].display_name | MIMO |
| concepts[6].id | https://openalex.org/C73555534 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46630632877349854 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[6].display_name | Cluster analysis |
| concepts[7].id | https://openalex.org/C86127852 |
| concepts[7].level | 5 |
| concepts[7].score | 0.443543940782547 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7250364 |
| concepts[7].display_name | Proportionally fair |
| concepts[8].id | https://openalex.org/C120314980 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3337186574935913 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[8].display_name | Distributed computing |
| concepts[9].id | https://openalex.org/C175893541 |
| concepts[9].level | 4 |
| concepts[9].score | 0.3200085163116455 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1196582 |
| concepts[9].display_name | Round-robin scheduling |
| concepts[10].id | https://openalex.org/C107568181 |
| concepts[10].level | 3 |
| concepts[10].score | 0.273481547832489 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5319000 |
| concepts[10].display_name | Dynamic priority scheduling |
| concepts[11].id | https://openalex.org/C555944384 |
| concepts[11].level | 2 |
| concepts[11].score | 0.12164449691772461 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q249 |
| concepts[11].display_name | Wireless |
| concepts[12].id | https://openalex.org/C126255220 |
| concepts[12].level | 1 |
| concepts[12].score | 0.11601808667182922 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[12].display_name | Mathematical optimization |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.11014002561569214 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09576845169067383 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C127162648 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[15].display_name | Channel (broadcasting) |
| concepts[16].id | https://openalex.org/C5119721 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[16].display_name | Quality of service |
| concepts[17].id | https://openalex.org/C119857082 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[17].display_name | Machine learning |
| keywords[0].id | https://openalex.org/keywords/scheduling |
| keywords[0].score | 0.74216228723526 |
| keywords[0].display_name | Scheduling (production processes) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7273417711257935 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/maximum-throughput-scheduling |
| keywords[2].score | 0.7046547532081604 |
| keywords[2].display_name | Maximum throughput scheduling |
| keywords[3].id | https://openalex.org/keywords/computer-network |
| keywords[3].score | 0.6318042278289795 |
| keywords[3].display_name | Computer network |
| keywords[4].id | https://openalex.org/keywords/throughput |
| keywords[4].score | 0.5284630656242371 |
| keywords[4].display_name | Throughput |
| keywords[5].id | https://openalex.org/keywords/mimo |
| keywords[5].score | 0.5211260914802551 |
| keywords[5].display_name | MIMO |
| keywords[6].id | https://openalex.org/keywords/cluster-analysis |
| keywords[6].score | 0.46630632877349854 |
| keywords[6].display_name | Cluster analysis |
| keywords[7].id | https://openalex.org/keywords/proportionally-fair |
| keywords[7].score | 0.443543940782547 |
| keywords[7].display_name | Proportionally fair |
| keywords[8].id | https://openalex.org/keywords/distributed-computing |
| keywords[8].score | 0.3337186574935913 |
| keywords[8].display_name | Distributed computing |
| keywords[9].id | https://openalex.org/keywords/round-robin-scheduling |
| keywords[9].score | 0.3200085163116455 |
| keywords[9].display_name | Round-robin scheduling |
| keywords[10].id | https://openalex.org/keywords/dynamic-priority-scheduling |
| keywords[10].score | 0.273481547832489 |
| keywords[10].display_name | Dynamic priority scheduling |
| keywords[11].id | https://openalex.org/keywords/wireless |
| keywords[11].score | 0.12164449691772461 |
| keywords[11].display_name | Wireless |
| keywords[12].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[12].score | 0.11601808667182922 |
| keywords[12].display_name | Mathematical optimization |
| keywords[13].id | https://openalex.org/keywords/telecommunications |
| keywords[13].score | 0.11014002561569214 |
| keywords[13].display_name | Telecommunications |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09576845169067383 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2305.08363 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2305.08363 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2305.08363 |
| locations[1].id | doi:10.48550/arxiv.2305.08363 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2305.08363 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5031847523 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7897-177X |
| authorships[0].author.display_name | Fabian Göttsch |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Göttsch, Fabian |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5061381969 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Noboru Osawa |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Osawa, Noboru |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102147420 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yoshiaki Amano |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amano, Yoshiaki |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5077572545 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Issei Kanno |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kanno, Issei |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073000411 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-5747-9024 |
| authorships[4].author.display_name | Kosuke Yamazaki |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yamazaki, Kosuke |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5058252389 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-7749-1333 |
| authorships[5].author.display_name | Giuseppe Caire |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Caire, Giuseppe |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2305.08363 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | User-Centric Clustering Under Fairness Scheduling in Cell-Free Massive MIMO |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10148 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced MIMO Systems Optimization |
| related_works | https://openalex.org/W2093454713, https://openalex.org/W3151407988, https://openalex.org/W2117584696, https://openalex.org/W1999684000, https://openalex.org/W2371964339, https://openalex.org/W3197303648, https://openalex.org/W2639562502, https://openalex.org/W1974668751, https://openalex.org/W2106093660, https://openalex.org/W3126963985 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2305.08363 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2305.08363 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2305.08363 |
| primary_location.id | pmh:oai:arXiv.org:2305.08363 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2305.08363 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2305.08363 |
| publication_date | 2023-05-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 79, 96, 102, 127, 160 |
| abstract_inverted_index.In | 114 |
| abstract_inverted_index.UE | 180 |
| abstract_inverted_index.We | 0, 89, 158 |
| abstract_inverted_index.an | 84, 148 |
| abstract_inverted_index.as | 83 |
| abstract_inverted_index.at | 143 |
| abstract_inverted_index.in | 4, 48, 60, 177 |
| abstract_inverted_index.is | 37, 63, 123 |
| abstract_inverted_index.of | 56, 109, 130, 151, 168, 179 |
| abstract_inverted_index.to | 100 |
| abstract_inverted_index.$L$ | 12 |
| abstract_inverted_index.$M$ | 18 |
| abstract_inverted_index.LM$ | 24 |
| abstract_inverted_index.UEs | 44, 94 |
| abstract_inverted_index.and | 77, 120, 140, 163 |
| abstract_inverted_index.any | 49 |
| abstract_inverted_index.are | 45, 71 |
| abstract_inverted_index.for | 126 |
| abstract_inverted_index.set | 129 |
| abstract_inverted_index.sum | 35 |
| abstract_inverted_index.the | 32, 54, 61, 74, 87, 110, 118, 169, 174 |
| abstract_inverted_index.MIMO | 9 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.act} | 41 |
| abstract_inverted_index.done | 125 |
| abstract_inverted_index.each | 16, 144 |
| abstract_inverted_index.less | 185 |
| abstract_inverted_index.much | 65, 184 |
| abstract_inverted_index.over | 73, 86 |
| abstract_inverted_index.rate | 82 |
| abstract_inverted_index.show | 30 |
| abstract_inverted_index.that | 31, 69 |
| abstract_inverted_index.this | 137 |
| abstract_inverted_index.tot} | 22 |
| abstract_inverted_index.user | 25 |
| abstract_inverted_index.with | 17, 95, 134 |
| abstract_inverted_index.among | 93 |
| abstract_inverted_index.fixed | 161 |
| abstract_inverted_index.given | 50, 128 |
| abstract_inverted_index.pilot | 119, 139, 162 |
| abstract_inverted_index.radio | 14 |
| abstract_inverted_index.serve | 20 |
| abstract_inverted_index.slot, | 146 |
| abstract_inverted_index.terms | 178 |
| abstract_inverted_index.tot}$ | 59 |
| abstract_inverted_index.users | 57, 70 |
| abstract_inverted_index.where | 11, 39 |
| abstract_inverted_index.which | 172 |
| abstract_inverted_index.while | 182 |
| abstract_inverted_index.(UEs). | 27 |
| abstract_inverted_index.Recent | 28 |
| abstract_inverted_index.active | 47, 131 |
| abstract_inverted_index.aiming | 99 |
| abstract_inverted_index.impose | 90 |
| abstract_inverted_index.method | 176 |
| abstract_inverted_index.number | 55 |
| abstract_inverted_index.rates. | 113 |
| abstract_inverted_index.remote | 13 |
| abstract_inverted_index.scheme | 166 |
| abstract_inverted_index.slots. | 52, 88 |
| abstract_inverted_index.units, | 15 |
| abstract_inverted_index.users. | 132 |
| abstract_inverted_index.$K_{\rm | 21, 40, 58 |
| abstract_inverted_index.\approx | 23, 42 |
| abstract_inverted_index.achieve | 78 |
| abstract_inverted_index.average | 85 |
| abstract_inverted_index.between | 155, 189 |
| abstract_inverted_index.certain | 80 |
| abstract_inverted_index.cluster | 121, 141, 164 |
| abstract_inverted_index.concave | 103 |
| abstract_inverted_index.control | 152, 186 |
| abstract_inverted_index.larger. | 66 |
| abstract_inverted_index.massive | 8 |
| abstract_inverted_index.maximum | 33 |
| abstract_inverted_index.network | 34, 62, 106, 156, 190 |
| abstract_inverted_index.propose | 159 |
| abstract_inverted_index.results | 29 |
| abstract_inverted_index.usually | 64, 124 |
| abstract_inverted_index.utility | 107 |
| abstract_inverted_index.Combined | 133 |
| abstract_inverted_index.However, | 53 |
| abstract_inverted_index.achieved | 38 |
| abstract_inverted_index.approach | 98 |
| abstract_inverted_index.baseline | 175 |
| abstract_inverted_index.consider | 1 |
| abstract_inverted_index.enormous | 149 |
| abstract_inverted_index.exchange | 154, 188 |
| abstract_inverted_index.fairness | 2, 92, 135 |
| abstract_inverted_index.function | 108 |
| abstract_inverted_index.maximize | 101 |
| abstract_inverted_index.network, | 10 |
| abstract_inverted_index.overhead | 150 |
| abstract_inverted_index.per-user | 111 |
| abstract_inverted_index.requires | 68, 138 |
| abstract_inverted_index.resource | 76 |
| abstract_inverted_index.antennas, | 19 |
| abstract_inverted_index.cell-free | 7, 115 |
| abstract_inverted_index.entities. | 157, 191 |
| abstract_inverted_index.involving | 147 |
| abstract_inverted_index.networks, | 117 |
| abstract_inverted_index.requiring | 183 |
| abstract_inverted_index.scheduled | 72 |
| abstract_inverted_index.signaling | 153 |
| abstract_inverted_index.assignment | 122, 165 |
| abstract_inverted_index.equipments | 26 |
| abstract_inverted_index.scheduling | 3, 97, 145, 170 |
| abstract_inverted_index.throughput | 36, 81, 91, 112 |
| abstract_inverted_index.decisions), | 171 |
| abstract_inverted_index.information | 187 |
| abstract_inverted_index.outperforms | 173 |
| abstract_inverted_index.scheduling, | 136 |
| abstract_inverted_index.throughput, | 181 |
| abstract_inverted_index.(independent | 167 |
| abstract_inverted_index.reassignment | 142 |
| abstract_inverted_index.user-centric | 6, 116 |
| abstract_inverted_index.\frac{LM}{2}$ | 43 |
| abstract_inverted_index.component-wise | 104 |
| abstract_inverted_index.non-decreasing | 105 |
| abstract_inverted_index.simultaneously | 46 |
| abstract_inverted_index.time-frequency | 51, 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |