Using Bayesian Deep Learning to Infer Planet Mass from Gaps in Protoplanetary Disks Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3847/1538-4357/ac7a3c
Planet-induced substructures, like annular gaps, observed in dust emission from protoplanetary disks, provide a unique probe for characterizing unseen young planets. While deep-learning-based models have an edge in characterizing a planet’s properties over traditional methods, such as customized simulations and empirical relations, they lacks the ability to quantify the uncertainties associated with their predictions. In this paper, we introduce a Bayesian deep-learning network, “DPNNet-Bayesian,” which can predict planet mass from disk gaps and also provides the uncertainties associated with the prediction. A unique feature of our approach is that it is able to distinguish between the uncertainty associated with the deep-learning architecture and the uncertainty inherent in the input data due to measurement noise. The model is trained on a data set generated from disk–planet simulations using the fargo3d hydrodynamics code, with a newly implemented fixed grain size module and improved initial conditions. The Bayesian framework enables the estimation of a gauge/confidence interval over the validity of the prediction, when applied to unknown observations. As a proof of concept, we apply DPNNet-Bayesian to the dust gaps observed in HL Tau. The network predicts masses of 86.0 ± 5.5 M ⊕ , 43.8 ± 3.3 M ⊕ , and 92.2 ± 5.1 M ⊕ , respectively, which are comparable to those from other studies based on specialized simulations.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3847/1538-4357/ac7a3c
- OA Status
- gold
- Cited By
- 7
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294686848
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294686848Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3847/1538-4357/ac7a3cDigital Object Identifier
- Title
-
Using Bayesian Deep Learning to Infer Planet Mass from Gaps in Protoplanetary DisksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-01Full publication date if available
- Authors
-
Sayantan Auddy, Ramit Dey, Min-Kai Lin, Daniel Carrera, Jacob B. SimonList of authors in order
- Landing page
-
https://doi.org/10.3847/1538-4357/ac7a3cPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3847/1538-4357/ac7a3cDirect OA link when available
- Concepts
-
Planet, Physics, Bayesian probability, Astrophysics, Bayesian network, Artificial intelligence, Deep learning, Algorithm, Machine learning, Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294686848 |
|---|---|
| doi | https://doi.org/10.3847/1538-4357/ac7a3c |
| ids.doi | https://doi.org/10.3847/1538-4357/ac7a3c |
| ids.openalex | https://openalex.org/W4294686848 |
| fwci | 5.39098616 |
| type | article |
| title | Using Bayesian Deep Learning to Infer Planet Mass from Gaps in Protoplanetary Disks |
| biblio.issue | 1 |
| biblio.volume | 936 |
| biblio.last_page | 93 |
| biblio.first_page | 93 |
| topics[0].id | https://openalex.org/T10477 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Astrophysics and Star Formation Studies |
| topics[1].id | https://openalex.org/T12967 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9943000078201294 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1607 |
| topics[1].subfield.display_name | Spectroscopy |
| topics[1].display_name | Molecular Spectroscopy and Structure |
| topics[2].id | https://openalex.org/T10039 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Stellar, planetary, and galactic studies |
| is_xpac | False |
| apc_list.value | 4499 |
| apc_list.currency | USD |
| apc_list.value_usd | 4499 |
| apc_paid.value | 4499 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4499 |
| concepts[0].id | https://openalex.org/C51244244 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8128167390823364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q634 |
| concepts[0].display_name | Planet |
| concepts[1].id | https://openalex.org/C121332964 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7185357213020325 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[1].display_name | Physics |
| concepts[2].id | https://openalex.org/C107673813 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5123554468154907 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[2].display_name | Bayesian probability |
| concepts[3].id | https://openalex.org/C44870925 |
| concepts[3].level | 1 |
| concepts[3].score | 0.45849549770355225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[3].display_name | Astrophysics |
| concepts[4].id | https://openalex.org/C33724603 |
| concepts[4].level | 2 |
| concepts[4].score | 0.45083746314048767 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q812540 |
| concepts[4].display_name | Bayesian network |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4405183792114258 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43411242961883545 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33961221575737 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33555132150650024 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.20803716778755188 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/planet |
| keywords[0].score | 0.8128167390823364 |
| keywords[0].display_name | Planet |
| keywords[1].id | https://openalex.org/keywords/physics |
| keywords[1].score | 0.7185357213020325 |
| keywords[1].display_name | Physics |
| keywords[2].id | https://openalex.org/keywords/bayesian-probability |
| keywords[2].score | 0.5123554468154907 |
| keywords[2].display_name | Bayesian probability |
| keywords[3].id | https://openalex.org/keywords/astrophysics |
| keywords[3].score | 0.45849549770355225 |
| keywords[3].display_name | Astrophysics |
| keywords[4].id | https://openalex.org/keywords/bayesian-network |
| keywords[4].score | 0.45083746314048767 |
| keywords[4].display_name | Bayesian network |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4405183792114258 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.43411242961883545 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.33961221575737 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.33555132150650024 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.20803716778755188 |
| keywords[9].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.3847/1538-4357/ac7a3c |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S1980519 |
| locations[0].source.issn | 0004-637X, 1538-4357 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0004-637X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Astrophysical Journal |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Astrophysical Journal |
| locations[0].landing_page_url | https://doi.org/10.3847/1538-4357/ac7a3c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5040991202 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3784-8913 |
| authorships[0].author.display_name | Sayantan Auddy |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I173911158 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| authorships[0].institutions[0].id | https://openalex.org/I173911158 |
| authorships[0].institutions[0].ror | https://ror.org/04rswrd78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I173911158 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Iowa State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sayantan Auddy |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| authorships[1].author.id | https://openalex.org/A5037911203 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5717-1589 |
| authorships[1].author.display_name | Ramit Dey |
| authorships[1].countries | CA, IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I165998391 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I125749732 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada |
| authorships[1].institutions[0].id | https://openalex.org/I125749732 |
| authorships[1].institutions[0].ror | https://ror.org/02grkyz14 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I125749732 |
| authorships[1].institutions[0].country_code | CA |
| authorships[1].institutions[0].display_name | Western University |
| authorships[1].institutions[1].id | https://openalex.org/I165998391 |
| authorships[1].institutions[1].ror | https://ror.org/050p6gz73 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I165998391 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Indian Association for the Cultivation of Science |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ramit Dey |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada, School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, India |
| authorships[2].author.id | https://openalex.org/A5067655724 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8597-4386 |
| authorships[2].author.display_name | Min-Kai Lin |
| authorships[2].countries | TW |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1311099166 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210119858, https://openalex.org/I4403386790 |
| authorships[2].affiliations[1].raw_affiliation_string | Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan |
| authorships[2].institutions[0].id | https://openalex.org/I4403386790 |
| authorships[2].institutions[0].ror | https://ror.org/02mh1d616 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119858, https://openalex.org/I4403386790 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | National Center for Theoretical Sciences, Physics Division |
| authorships[2].institutions[1].id | https://openalex.org/I1311099166 |
| authorships[2].institutions[1].ror | https://ror.org/01hfpy566 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I1311099166, https://openalex.org/I84653119 |
| authorships[2].institutions[1].country_code | TW |
| authorships[2].institutions[1].display_name | Institute of Astronomy and Astrophysics, Academia Sinica |
| authorships[2].institutions[2].id | https://openalex.org/I4210119858 |
| authorships[2].institutions[2].ror | https://ror.org/02mfp0b67 |
| authorships[2].institutions[2].type | facility |
| authorships[2].institutions[2].lineage | https://openalex.org/I4210119858 |
| authorships[2].institutions[2].country_code | TW |
| authorships[2].institutions[2].display_name | National Center for Theoretical Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Min-Kai Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 10617, Taiwan, Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan |
| authorships[3].author.id | https://openalex.org/A5083518430 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6259-3575 |
| authorships[3].author.display_name | Daniel Carrera |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I173911158 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| authorships[3].institutions[0].id | https://openalex.org/I173911158 |
| authorships[3].institutions[0].ror | https://ror.org/04rswrd78 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I173911158 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Iowa State University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Daniel Carrera |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| authorships[4].author.id | https://openalex.org/A5043307957 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-3771-8054 |
| authorships[4].author.display_name | Jacob B. Simon |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I173911158 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| authorships[4].institutions[0].id | https://openalex.org/I173911158 |
| authorships[4].institutions[0].ror | https://ror.org/04rswrd78 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I173911158 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Iowa State University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Jacob B. Simon |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Physics and Astronomy, Iowa State University, Ames, IA 50010, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3847/1538-4357/ac7a3c |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Bayesian Deep Learning to Infer Planet Mass from Gaps in Protoplanetary Disks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10477 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Astrophysics and Star Formation Studies |
| related_works | https://openalex.org/W4388425028, https://openalex.org/W4387355496, https://openalex.org/W4283161366, https://openalex.org/W4297434856, https://openalex.org/W2950328024, https://openalex.org/W4375867731, https://openalex.org/W3099212456, https://openalex.org/W3166036498, https://openalex.org/W2054934363, https://openalex.org/W4282939103 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3847/1538-4357/ac7a3c |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S1980519 |
| best_oa_location.source.issn | 0004-637X, 1538-4357 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0004-637X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Astrophysical Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Astrophysical Journal |
| best_oa_location.landing_page_url | https://doi.org/10.3847/1538-4357/ac7a3c |
| primary_location.id | doi:10.3847/1538-4357/ac7a3c |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S1980519 |
| primary_location.source.issn | 0004-637X, 1538-4357 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0004-637X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Astrophysical Journal |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Astrophysical Journal |
| primary_location.landing_page_url | https://doi.org/10.3847/1538-4357/ac7a3c |
| publication_date | 2022-09-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3102100346, https://openalex.org/W1920023268, https://openalex.org/W2314445977, https://openalex.org/W3185064977, https://openalex.org/W3082619320, https://openalex.org/W2901969800, https://openalex.org/W2269830133, https://openalex.org/W2225156818, https://openalex.org/W2095945864, https://openalex.org/W1987345881, https://openalex.org/W1609435114, https://openalex.org/W1817440796, https://openalex.org/W2962723377, https://openalex.org/W2026852029, https://openalex.org/W4292406582, https://openalex.org/W2084622335, https://openalex.org/W2947114586, https://openalex.org/W2782884703, https://openalex.org/W2904999681, https://openalex.org/W3014596384, https://openalex.org/W3083524514, https://openalex.org/W63802623, https://openalex.org/W2106556001, https://openalex.org/W2223572600, https://openalex.org/W3100736846, https://openalex.org/W2299265631, https://openalex.org/W2088024896, https://openalex.org/W2810503551, https://openalex.org/W2798978245, https://openalex.org/W2885274016, https://openalex.org/W2921041755, https://openalex.org/W2116952160, https://openalex.org/W4210818292, https://openalex.org/W2091724524, https://openalex.org/W2751448052, https://openalex.org/W2804790504, https://openalex.org/W2955061178, https://openalex.org/W3001752242, https://openalex.org/W2065532082, https://openalex.org/W2942231644, https://openalex.org/W3087681349, https://openalex.org/W2804872128, https://openalex.org/W2035547408, https://openalex.org/W2883744742, https://openalex.org/W2068433364, https://openalex.org/W2962851448, https://openalex.org/W4205823607, https://openalex.org/W2905495549, https://openalex.org/W3101309688, https://openalex.org/W3101670442, https://openalex.org/W3105162764, https://openalex.org/W3204154871, https://openalex.org/W3100377396, https://openalex.org/W3103119880, https://openalex.org/W3099926431, https://openalex.org/W3101599961, https://openalex.org/W3098952337, https://openalex.org/W3105476864, https://openalex.org/W3102714277, https://openalex.org/W3098022595, https://openalex.org/W3098725059, https://openalex.org/W3134774296, https://openalex.org/W3103385539, https://openalex.org/W3105179610, https://openalex.org/W3101790398, https://openalex.org/W3102518771, https://openalex.org/W3164731060, https://openalex.org/W3103506589, https://openalex.org/W3103681827 |
| referenced_works_count | 69 |
| abstract_inverted_index., | 191, 197, 204 |
| abstract_inverted_index.A | 82 |
| abstract_inverted_index.M | 189, 195, 202 |
| abstract_inverted_index.a | 14, 30, 60, 120, 133, 151, 166 |
| abstract_inverted_index.As | 165 |
| abstract_inverted_index.HL | 179 |
| abstract_inverted_index.In | 55 |
| abstract_inverted_index.an | 26 |
| abstract_inverted_index.as | 37 |
| abstract_inverted_index.in | 7, 28, 107, 178 |
| abstract_inverted_index.is | 88, 91, 117 |
| abstract_inverted_index.it | 90 |
| abstract_inverted_index.of | 85, 150, 157, 168, 185 |
| abstract_inverted_index.on | 119, 215 |
| abstract_inverted_index.to | 47, 93, 112, 162, 173, 209 |
| abstract_inverted_index.we | 58, 170 |
| abstract_inverted_index.± | 187, 193, 200 |
| abstract_inverted_index.3.3 | 194 |
| abstract_inverted_index.5.1 | 201 |
| abstract_inverted_index.5.5 | 188 |
| abstract_inverted_index.The | 115, 144, 181 |
| abstract_inverted_index.and | 40, 73, 103, 140, 198 |
| abstract_inverted_index.are | 207 |
| abstract_inverted_index.can | 66 |
| abstract_inverted_index.due | 111 |
| abstract_inverted_index.for | 17 |
| abstract_inverted_index.our | 86 |
| abstract_inverted_index.set | 122 |
| abstract_inverted_index.the | 45, 49, 76, 80, 96, 100, 104, 108, 128, 148, 155, 158, 174 |
| abstract_inverted_index.⊕ | 190, 196, 203 |
| abstract_inverted_index.43.8 | 192 |
| abstract_inverted_index.86.0 | 186 |
| abstract_inverted_index.92.2 | 199 |
| abstract_inverted_index.Tau. | 180 |
| abstract_inverted_index.able | 92 |
| abstract_inverted_index.also | 74 |
| abstract_inverted_index.data | 110, 121 |
| abstract_inverted_index.disk | 71 |
| abstract_inverted_index.dust | 8, 175 |
| abstract_inverted_index.edge | 27 |
| abstract_inverted_index.from | 10, 70, 124, 211 |
| abstract_inverted_index.gaps | 72, 176 |
| abstract_inverted_index.have | 25 |
| abstract_inverted_index.like | 3 |
| abstract_inverted_index.mass | 69 |
| abstract_inverted_index.over | 33, 154 |
| abstract_inverted_index.size | 138 |
| abstract_inverted_index.such | 36 |
| abstract_inverted_index.that | 89 |
| abstract_inverted_index.they | 43 |
| abstract_inverted_index.this | 56 |
| abstract_inverted_index.when | 160 |
| abstract_inverted_index.with | 52, 79, 99, 132 |
| abstract_inverted_index.While | 22 |
| abstract_inverted_index.apply | 171 |
| abstract_inverted_index.based | 214 |
| abstract_inverted_index.code, | 131 |
| abstract_inverted_index.fixed | 136 |
| abstract_inverted_index.gaps, | 5 |
| abstract_inverted_index.grain | 137 |
| abstract_inverted_index.input | 109 |
| abstract_inverted_index.lacks | 44 |
| abstract_inverted_index.model | 116 |
| abstract_inverted_index.newly | 134 |
| abstract_inverted_index.other | 212 |
| abstract_inverted_index.probe | 16 |
| abstract_inverted_index.proof | 167 |
| abstract_inverted_index.their | 53 |
| abstract_inverted_index.those | 210 |
| abstract_inverted_index.using | 127 |
| abstract_inverted_index.which | 65, 206 |
| abstract_inverted_index.young | 20 |
| abstract_inverted_index.disks, | 12 |
| abstract_inverted_index.masses | 184 |
| abstract_inverted_index.models | 24 |
| abstract_inverted_index.module | 139 |
| abstract_inverted_index.noise. | 114 |
| abstract_inverted_index.paper, | 57 |
| abstract_inverted_index.planet | 68 |
| abstract_inverted_index.unique | 15, 83 |
| abstract_inverted_index.unseen | 19 |
| abstract_inverted_index.ability | 46 |
| abstract_inverted_index.annular | 4 |
| abstract_inverted_index.applied | 161 |
| abstract_inverted_index.between | 95 |
| abstract_inverted_index.enables | 147 |
| abstract_inverted_index.fargo3d | 129 |
| abstract_inverted_index.feature | 84 |
| abstract_inverted_index.initial | 142 |
| abstract_inverted_index.network | 182 |
| abstract_inverted_index.predict | 67 |
| abstract_inverted_index.provide | 13 |
| abstract_inverted_index.studies | 213 |
| abstract_inverted_index.trained | 118 |
| abstract_inverted_index.unknown | 163 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 61, 145 |
| abstract_inverted_index.approach | 87 |
| abstract_inverted_index.concept, | 169 |
| abstract_inverted_index.emission | 9 |
| abstract_inverted_index.improved | 141 |
| abstract_inverted_index.inherent | 106 |
| abstract_inverted_index.interval | 153 |
| abstract_inverted_index.methods, | 35 |
| abstract_inverted_index.network, | 63 |
| abstract_inverted_index.observed | 6, 177 |
| abstract_inverted_index.planets. | 21 |
| abstract_inverted_index.predicts | 183 |
| abstract_inverted_index.provides | 75 |
| abstract_inverted_index.quantify | 48 |
| abstract_inverted_index.validity | 156 |
| abstract_inverted_index.empirical | 41 |
| abstract_inverted_index.framework | 146 |
| abstract_inverted_index.generated | 123 |
| abstract_inverted_index.introduce | 59 |
| abstract_inverted_index.associated | 51, 78, 98 |
| abstract_inverted_index.comparable | 208 |
| abstract_inverted_index.customized | 38 |
| abstract_inverted_index.estimation | 149 |
| abstract_inverted_index.planet’s | 31 |
| abstract_inverted_index.properties | 32 |
| abstract_inverted_index.relations, | 42 |
| abstract_inverted_index.conditions. | 143 |
| abstract_inverted_index.distinguish | 94 |
| abstract_inverted_index.implemented | 135 |
| abstract_inverted_index.measurement | 113 |
| abstract_inverted_index.prediction, | 159 |
| abstract_inverted_index.prediction. | 81 |
| abstract_inverted_index.simulations | 39, 126 |
| abstract_inverted_index.specialized | 216 |
| abstract_inverted_index.traditional | 34 |
| abstract_inverted_index.uncertainty | 97, 105 |
| abstract_inverted_index.architecture | 102 |
| abstract_inverted_index.predictions. | 54 |
| abstract_inverted_index.simulations. | 217 |
| abstract_inverted_index.deep-learning | 62, 101 |
| abstract_inverted_index.disk–planet | 125 |
| abstract_inverted_index.hydrodynamics | 130 |
| abstract_inverted_index.observations. | 164 |
| abstract_inverted_index.respectively, | 205 |
| abstract_inverted_index.uncertainties | 50, 77 |
| abstract_inverted_index.Planet-induced | 1 |
| abstract_inverted_index.characterizing | 18, 29 |
| abstract_inverted_index.protoplanetary | 11 |
| abstract_inverted_index.substructures, | 2 |
| abstract_inverted_index.DPNNet-Bayesian | 172 |
| abstract_inverted_index.gauge/confidence | 152 |
| abstract_inverted_index.deep-learning-based | 23 |
| abstract_inverted_index.“DPNNet-Bayesian,” | 64 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5040991202 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I173911158 |
| citation_normalized_percentile.value | 0.807797 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |