Using Binary Paradata to Correct for Measurement Error in Survey Data Analysis Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.6084/m9.figshare.1627944
Paradata refers here to data at unit level on an observed auxiliary variable, not usually of direct scientific interest, which may be informative about the quality of the survey data for the unit. There is increasing interest among survey researchers in how to use such data. Its use to reduce bias from nonresponse has received more attention so far than its use to correct for measurement error. This article considers the latter with a focus on binary paradata indicating the presence of measurement error. A motivating application concerns inference about a regression model, where earnings is a covariate measured with error and whether a respondent refers to pay records is the paradata variable. We specify a parametric model allowing for either normally or t-distributed measurement errors and discuss the assumptions required to identify the regression coefficients. We propose two estimation approaches that take account of complex survey designs: pseudo-maximum likelihood estimation and parametric fractional imputation. These approaches are assessed in a simulation study and are applied to a regression of a measure of deprivation given earnings and other covariates using British Household Panel Survey data. It is found that the proposed approach to correcting for measurement error reduces bias and improves on the precision of a simple approach based on accurate observations. We outline briefly possible extensions to uses of this approach at earlier stages in the survey process. Supplemental materials are available online.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.6084/m9.figshare.1627944
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2907387130
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2907387130Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.6084/m9.figshare.1627944Digital Object Identifier
- Title
-
Using Binary Paradata to Correct for Measurement Error in Survey Data AnalysisWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-01-01Full publication date if available
- Authors
-
Damião Nóbrega da Silva, Chris Skinner, Jae Kwang KimList of authors in order
- Landing page
-
https://doi.org/10.6084/m9.figshare.1627944Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.6084/m9.figshare.1627944Direct OA link when available
- Concepts
-
Statistics, Binary number, Computer science, Binary data, Econometrics, Mathematics, ArithmeticTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2907387130 |
|---|---|
| doi | https://doi.org/10.6084/m9.figshare.1627944 |
| ids.doi | https://doi.org/10.6084/m9.figshare.1627944 |
| ids.mag | 2907387130 |
| ids.openalex | https://openalex.org/W2907387130 |
| fwci | |
| type | dataset |
| title | Using Binary Paradata to Correct for Measurement Error in Survey Data Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10757 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.597000002861023 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3305 |
| topics[0].subfield.display_name | Geography, Planning and Development |
| topics[0].display_name | Geographic Information Systems Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C105795698 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5937995314598083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[0].display_name | Statistics |
| concepts[1].id | https://openalex.org/C48372109 |
| concepts[1].level | 2 |
| concepts[1].score | 0.570812463760376 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3913 |
| concepts[1].display_name | Binary number |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4588606357574463 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2779190172 |
| concepts[3].level | 3 |
| concepts[3].score | 0.444011926651001 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4913888 |
| concepts[3].display_name | Binary data |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36709433794021606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2845688462257385 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C94375191 |
| concepts[6].level | 1 |
| concepts[6].score | 0.18204718828201294 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11205 |
| concepts[6].display_name | Arithmetic |
| keywords[0].id | https://openalex.org/keywords/statistics |
| keywords[0].score | 0.5937995314598083 |
| keywords[0].display_name | Statistics |
| keywords[1].id | https://openalex.org/keywords/binary-number |
| keywords[1].score | 0.570812463760376 |
| keywords[1].display_name | Binary number |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4588606357574463 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/binary-data |
| keywords[3].score | 0.444011926651001 |
| keywords[3].display_name | Binary data |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.36709433794021606 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.2845688462257385 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/arithmetic |
| keywords[6].score | 0.18204718828201294 |
| keywords[6].display_name | Arithmetic |
| language | en |
| locations[0].id | doi:10.6084/m9.figshare.1627944 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.6084/m9.figshare.1627944 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5026533042 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3031-0870 |
| authorships[0].author.display_name | Damião Nóbrega da Silva |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Damião Nóbrega Da Silva |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102879905 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chris Skinner |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chris J. Skinner |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100652681 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0246-6029 |
| authorships[2].author.display_name | Jae Kwang Kim |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jae Kwang Kim |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.6084/m9.figshare.1627944 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Binary Paradata to Correct for Measurement Error in Survey Data Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10757 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.597000002861023 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3305 |
| primary_topic.subfield.display_name | Geography, Planning and Development |
| primary_topic.display_name | Geographic Information Systems Studies |
| related_works | https://openalex.org/W2154693897, https://openalex.org/W2094988397, https://openalex.org/W2018164323, https://openalex.org/W2018596126, https://openalex.org/W2083580028, https://openalex.org/W1980535114, https://openalex.org/W2063706985, https://openalex.org/W2380155140, https://openalex.org/W4233766581, https://openalex.org/W2138979340 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.6084/m9.figshare.1627944 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.6084/m9.figshare.1627944 |
| primary_location.id | doi:10.6084/m9.figshare.1627944 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.6084/m9.figshare.1627944 |
| publication_date | 2015-01-01 |
| publication_year | 2015 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 73, 90, 96, 103, 115, 160, 167, 170, 205 |
| abstract_inverted_index.It | 185 |
| abstract_inverted_index.We | 113, 136, 212 |
| abstract_inverted_index.an | 9 |
| abstract_inverted_index.at | 5, 222 |
| abstract_inverted_index.be | 21 |
| abstract_inverted_index.in | 40, 159, 225 |
| abstract_inverted_index.is | 34, 95, 109, 186 |
| abstract_inverted_index.of | 15, 26, 81, 144, 169, 172, 204, 219 |
| abstract_inverted_index.on | 8, 75, 201, 209 |
| abstract_inverted_index.or | 122 |
| abstract_inverted_index.so | 57 |
| abstract_inverted_index.to | 3, 42, 48, 62, 106, 131, 166, 192, 217 |
| abstract_inverted_index.Its | 46 |
| abstract_inverted_index.and | 101, 126, 151, 163, 176, 199 |
| abstract_inverted_index.are | 157, 164, 231 |
| abstract_inverted_index.far | 58 |
| abstract_inverted_index.for | 30, 64, 119, 194 |
| abstract_inverted_index.has | 53 |
| abstract_inverted_index.how | 41 |
| abstract_inverted_index.its | 60 |
| abstract_inverted_index.may | 20 |
| abstract_inverted_index.not | 13 |
| abstract_inverted_index.pay | 107 |
| abstract_inverted_index.the | 24, 27, 31, 70, 79, 110, 128, 133, 189, 202, 226 |
| abstract_inverted_index.two | 138 |
| abstract_inverted_index.use | 43, 47, 61 |
| abstract_inverted_index.This | 67 |
| abstract_inverted_index.bias | 50, 198 |
| abstract_inverted_index.data | 4, 29 |
| abstract_inverted_index.from | 51 |
| abstract_inverted_index.here | 2 |
| abstract_inverted_index.more | 55 |
| abstract_inverted_index.such | 44 |
| abstract_inverted_index.take | 142 |
| abstract_inverted_index.than | 59 |
| abstract_inverted_index.that | 141, 188 |
| abstract_inverted_index.this | 220 |
| abstract_inverted_index.unit | 6 |
| abstract_inverted_index.uses | 218 |
| abstract_inverted_index.with | 72, 99 |
| abstract_inverted_index.Panel | 182 |
| abstract_inverted_index.There | 33 |
| abstract_inverted_index.These | 155 |
| abstract_inverted_index.about | 23, 89 |
| abstract_inverted_index.among | 37 |
| abstract_inverted_index.based | 208 |
| abstract_inverted_index.data. | 45, 184 |
| abstract_inverted_index.error | 100, 196 |
| abstract_inverted_index.focus | 74 |
| abstract_inverted_index.found | 187 |
| abstract_inverted_index.given | 174 |
| abstract_inverted_index.level | 7 |
| abstract_inverted_index.model | 117 |
| abstract_inverted_index.other | 177 |
| abstract_inverted_index.study | 162 |
| abstract_inverted_index.unit. | 32 |
| abstract_inverted_index.using | 179 |
| abstract_inverted_index.where | 93 |
| abstract_inverted_index.which | 19 |
| abstract_inverted_index.Survey | 183 |
| abstract_inverted_index.binary | 76 |
| abstract_inverted_index.direct | 16 |
| abstract_inverted_index.either | 120 |
| abstract_inverted_index.error. | 66, 83 |
| abstract_inverted_index.errors | 125 |
| abstract_inverted_index.latter | 71 |
| abstract_inverted_index.model, | 92 |
| abstract_inverted_index.reduce | 49 |
| abstract_inverted_index.refers | 1, 105 |
| abstract_inverted_index.simple | 206 |
| abstract_inverted_index.stages | 224 |
| abstract_inverted_index.survey | 28, 38, 146, 227 |
| abstract_inverted_index.British | 180 |
| abstract_inverted_index.account | 143 |
| abstract_inverted_index.applied | 165 |
| abstract_inverted_index.article | 68 |
| abstract_inverted_index.briefly | 214 |
| abstract_inverted_index.complex | 145 |
| abstract_inverted_index.correct | 63 |
| abstract_inverted_index.discuss | 127 |
| abstract_inverted_index.earlier | 223 |
| abstract_inverted_index.measure | 171 |
| abstract_inverted_index.online. | 233 |
| abstract_inverted_index.outline | 213 |
| abstract_inverted_index.propose | 137 |
| abstract_inverted_index.quality | 25 |
| abstract_inverted_index.records | 108 |
| abstract_inverted_index.reduces | 197 |
| abstract_inverted_index.specify | 114 |
| abstract_inverted_index.usually | 14 |
| abstract_inverted_index.whether | 102 |
| abstract_inverted_index.Paradata | 0 |
| abstract_inverted_index.accurate | 210 |
| abstract_inverted_index.allowing | 118 |
| abstract_inverted_index.approach | 191, 207, 221 |
| abstract_inverted_index.assessed | 158 |
| abstract_inverted_index.concerns | 87 |
| abstract_inverted_index.designs: | 147 |
| abstract_inverted_index.earnings | 94, 175 |
| abstract_inverted_index.identify | 132 |
| abstract_inverted_index.improves | 200 |
| abstract_inverted_index.interest | 36 |
| abstract_inverted_index.measured | 98 |
| abstract_inverted_index.normally | 121 |
| abstract_inverted_index.observed | 10 |
| abstract_inverted_index.paradata | 77, 111 |
| abstract_inverted_index.possible | 215 |
| abstract_inverted_index.presence | 80 |
| abstract_inverted_index.process. | 228 |
| abstract_inverted_index.proposed | 190 |
| abstract_inverted_index.received | 54 |
| abstract_inverted_index.required | 130 |
| abstract_inverted_index.Household | 181 |
| abstract_inverted_index.attention | 56 |
| abstract_inverted_index.auxiliary | 11 |
| abstract_inverted_index.available | 232 |
| abstract_inverted_index.considers | 69 |
| abstract_inverted_index.covariate | 97 |
| abstract_inverted_index.inference | 88 |
| abstract_inverted_index.interest, | 18 |
| abstract_inverted_index.materials | 230 |
| abstract_inverted_index.precision | 203 |
| abstract_inverted_index.variable, | 12 |
| abstract_inverted_index.variable. | 112 |
| abstract_inverted_index.approaches | 140, 156 |
| abstract_inverted_index.correcting | 193 |
| abstract_inverted_index.covariates | 178 |
| abstract_inverted_index.estimation | 139, 150 |
| abstract_inverted_index.extensions | 216 |
| abstract_inverted_index.fractional | 153 |
| abstract_inverted_index.increasing | 35 |
| abstract_inverted_index.indicating | 78 |
| abstract_inverted_index.likelihood | 149 |
| abstract_inverted_index.motivating | 85 |
| abstract_inverted_index.parametric | 116, 152 |
| abstract_inverted_index.regression | 91, 134, 168 |
| abstract_inverted_index.respondent | 104 |
| abstract_inverted_index.scientific | 17 |
| abstract_inverted_index.simulation | 161 |
| abstract_inverted_index.application | 86 |
| abstract_inverted_index.assumptions | 129 |
| abstract_inverted_index.deprivation | 173 |
| abstract_inverted_index.imputation. | 154 |
| abstract_inverted_index.informative | 22 |
| abstract_inverted_index.measurement | 65, 82, 124, 195 |
| abstract_inverted_index.nonresponse | 52 |
| abstract_inverted_index.researchers | 39 |
| abstract_inverted_index.Supplemental | 229 |
| abstract_inverted_index.coefficients. | 135 |
| abstract_inverted_index.observations. | 211 |
| abstract_inverted_index.pseudo-maximum | 148 |
| abstract_inverted_index.<i>t</i>-distributed | 123 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile |