Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1016/j.procs.2018.04.077
Due to urban pollution, transport electrification is being currently promoted in different countries. Electric Vehicles (EVs) sales are growing all over the world, but there are still some challenges to be solved before a mass adoption of this type of vehicles occurs. One of the main drawbacks of EVs are their limited range, for that reason an accurate estimation of the state-of-charge (SOC) is required. The main contribution of this work is the design of a Nonlinear Autoregressive with External Input (NARX) artificial neural network to estimate the SOC of an EV using real data extracted from the car during its daily trips. The network is trained using voltage, current and four different battery pack temperatures as input and SOC as output. This network has been tested using 54 different real driving cycles, obtaining highly accurate results, with a mean squared error lower than 1e-6 in all situations
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.procs.2018.04.077
- OA Status
- diamond
- Cited By
- 70
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2801753412
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2801753412Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.procs.2018.04.077Digital Object Identifier
- Title
-
Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric VehiclesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
David Jiménez, Jesús Fraile-Ardanuy, Sandra Castaño-Solis, Julia Merino, Roberto Álvaro-HermanaList of authors in order
- Landing page
-
https://doi.org/10.1016/j.procs.2018.04.077Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.procs.2018.04.077Direct OA link when available
- Concepts
-
Computer science, Nonlinear autoregressive exogenous model, State of charge, Electrification, Artificial neural network, Battery (electricity), Electric vehicle, Battery pack, Range (aeronautics), Autoregressive model, Voltage, Nonlinear system, Automotive engineering, Mean squared error, Work (physics), Driving range, Artificial intelligence, Electrical engineering, Power (physics), Electricity, Econometrics, Engineering, Physics, Aerospace engineering, Mathematics, Statistics, Economics, Mechanical engineering, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
70Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 7, 2023: 13, 2022: 12, 2021: 11Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2801753412 |
|---|---|
| doi | https://doi.org/10.1016/j.procs.2018.04.077 |
| ids.doi | https://doi.org/10.1016/j.procs.2018.04.077 |
| ids.mag | 2801753412 |
| ids.openalex | https://openalex.org/W2801753412 |
| fwci | 4.95296078 |
| type | article |
| title | Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles |
| biblio.issue | |
| biblio.volume | 130 |
| biblio.last_page | 540 |
| biblio.first_page | 533 |
| topics[0].id | https://openalex.org/T10663 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2203 |
| topics[0].subfield.display_name | Automotive Engineering |
| topics[0].display_name | Advanced Battery Technologies Research |
| topics[1].id | https://openalex.org/T10768 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9962999820709229 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Electric Vehicles and Infrastructure |
| topics[2].id | https://openalex.org/T10808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2203 |
| topics[2].subfield.display_name | Automotive Engineering |
| topics[2].display_name | Electric and Hybrid Vehicle Technologies |
| funders[0].id | https://openalex.org/F4320321837 |
| funders[0].ror | https://ror.org/034900433 |
| funders[0].display_name | Ministerio de Economía y Competitividad |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7822672128677368 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C42536954 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7607057094573975 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7049462 |
| concepts[1].display_name | Nonlinear autoregressive exogenous model |
| concepts[2].id | https://openalex.org/C2776582896 |
| concepts[2].level | 4 |
| concepts[2].score | 0.6831716299057007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5368536 |
| concepts[2].display_name | State of charge |
| concepts[3].id | https://openalex.org/C2778324724 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6516053676605225 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1076056 |
| concepts[3].display_name | Electrification |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6439804434776306 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C555008776 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6116210222244263 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q267298 |
| concepts[5].display_name | Battery (electricity) |
| concepts[6].id | https://openalex.org/C2776422217 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5583488345146179 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q13629441 |
| concepts[6].display_name | Electric vehicle |
| concepts[7].id | https://openalex.org/C2778508592 |
| concepts[7].level | 4 |
| concepts[7].score | 0.5492199063301086 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420116 |
| concepts[7].display_name | Battery pack |
| concepts[8].id | https://openalex.org/C204323151 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5359386205673218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[8].display_name | Range (aeronautics) |
| concepts[9].id | https://openalex.org/C159877910 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5293306112289429 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[9].display_name | Autoregressive model |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4886487126350403 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C158622935 |
| concepts[11].level | 2 |
| concepts[11].score | 0.45332518219947815 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[11].display_name | Nonlinear system |
| concepts[12].id | https://openalex.org/C171146098 |
| concepts[12].level | 1 |
| concepts[12].score | 0.44636037945747375 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[12].display_name | Automotive engineering |
| concepts[13].id | https://openalex.org/C139945424 |
| concepts[13].level | 2 |
| concepts[13].score | 0.443970263004303 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[13].display_name | Mean squared error |
| concepts[14].id | https://openalex.org/C18762648 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4125567376613617 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q42213 |
| concepts[14].display_name | Work (physics) |
| concepts[15].id | https://openalex.org/C2780847881 |
| concepts[15].level | 4 |
| concepts[15].score | 0.4111436605453491 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3177122 |
| concepts[15].display_name | Driving range |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.18180307745933533 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C119599485 |
| concepts[17].level | 1 |
| concepts[17].score | 0.17163598537445068 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[17].display_name | Electrical engineering |
| concepts[18].id | https://openalex.org/C163258240 |
| concepts[18].level | 2 |
| concepts[18].score | 0.16235041618347168 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q25342 |
| concepts[18].display_name | Power (physics) |
| concepts[19].id | https://openalex.org/C206658404 |
| concepts[19].level | 2 |
| concepts[19].score | 0.16218167543411255 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q12725 |
| concepts[19].display_name | Electricity |
| concepts[20].id | https://openalex.org/C149782125 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0764516294002533 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[20].display_name | Econometrics |
| concepts[21].id | https://openalex.org/C127413603 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0754731297492981 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[21].display_name | Engineering |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| concepts[23].id | https://openalex.org/C146978453 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[23].display_name | Aerospace engineering |
| concepts[24].id | https://openalex.org/C33923547 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[24].display_name | Mathematics |
| concepts[25].id | https://openalex.org/C105795698 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[25].display_name | Statistics |
| concepts[26].id | https://openalex.org/C162324750 |
| concepts[26].level | 0 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[26].display_name | Economics |
| concepts[27].id | https://openalex.org/C78519656 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[27].display_name | Mechanical engineering |
| concepts[28].id | https://openalex.org/C62520636 |
| concepts[28].level | 1 |
| concepts[28].score | 0.0 |
| concepts[28].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[28].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7822672128677368 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/nonlinear-autoregressive-exogenous-model |
| keywords[1].score | 0.7607057094573975 |
| keywords[1].display_name | Nonlinear autoregressive exogenous model |
| keywords[2].id | https://openalex.org/keywords/state-of-charge |
| keywords[2].score | 0.6831716299057007 |
| keywords[2].display_name | State of charge |
| keywords[3].id | https://openalex.org/keywords/electrification |
| keywords[3].score | 0.6516053676605225 |
| keywords[3].display_name | Electrification |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6439804434776306 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/battery |
| keywords[5].score | 0.6116210222244263 |
| keywords[5].display_name | Battery (electricity) |
| keywords[6].id | https://openalex.org/keywords/electric-vehicle |
| keywords[6].score | 0.5583488345146179 |
| keywords[6].display_name | Electric vehicle |
| keywords[7].id | https://openalex.org/keywords/battery-pack |
| keywords[7].score | 0.5492199063301086 |
| keywords[7].display_name | Battery pack |
| keywords[8].id | https://openalex.org/keywords/range |
| keywords[8].score | 0.5359386205673218 |
| keywords[8].display_name | Range (aeronautics) |
| keywords[9].id | https://openalex.org/keywords/autoregressive-model |
| keywords[9].score | 0.5293306112289429 |
| keywords[9].display_name | Autoregressive model |
| keywords[10].id | https://openalex.org/keywords/voltage |
| keywords[10].score | 0.4886487126350403 |
| keywords[10].display_name | Voltage |
| keywords[11].id | https://openalex.org/keywords/nonlinear-system |
| keywords[11].score | 0.45332518219947815 |
| keywords[11].display_name | Nonlinear system |
| keywords[12].id | https://openalex.org/keywords/automotive-engineering |
| keywords[12].score | 0.44636037945747375 |
| keywords[12].display_name | Automotive engineering |
| keywords[13].id | https://openalex.org/keywords/mean-squared-error |
| keywords[13].score | 0.443970263004303 |
| keywords[13].display_name | Mean squared error |
| keywords[14].id | https://openalex.org/keywords/work |
| keywords[14].score | 0.4125567376613617 |
| keywords[14].display_name | Work (physics) |
| keywords[15].id | https://openalex.org/keywords/driving-range |
| keywords[15].score | 0.4111436605453491 |
| keywords[15].display_name | Driving range |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.18180307745933533 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/electrical-engineering |
| keywords[17].score | 0.17163598537445068 |
| keywords[17].display_name | Electrical engineering |
| keywords[18].id | https://openalex.org/keywords/power |
| keywords[18].score | 0.16235041618347168 |
| keywords[18].display_name | Power (physics) |
| keywords[19].id | https://openalex.org/keywords/electricity |
| keywords[19].score | 0.16218167543411255 |
| keywords[19].display_name | Electricity |
| keywords[20].id | https://openalex.org/keywords/econometrics |
| keywords[20].score | 0.0764516294002533 |
| keywords[20].display_name | Econometrics |
| keywords[21].id | https://openalex.org/keywords/engineering |
| keywords[21].score | 0.0754731297492981 |
| keywords[21].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1016/j.procs.2018.04.077 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120348307 |
| locations[0].source.issn | 1877-0509 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1877-0509 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Procedia Computer Science |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Procedia Computer Science |
| locations[0].landing_page_url | https://doi.org/10.1016/j.procs.2018.04.077 |
| locations[1].id | pmh:oai:dsp.tecnalia.com:11556/539 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306402037 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | TECNALIA Publications (Fundación TECNALIA Research & Innovation) |
| locations[1].source.host_organization | https://openalex.org/I4210113430 |
| locations[1].source.host_organization_name | Tecnalia |
| locations[1].source.host_organization_lineage | https://openalex.org/I4210113430 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | conferenceObject |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/11556/539 |
| locations[2].id | pmh:oai:dsp.tecnalia.com:11556/598 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306402037 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | TECNALIA Publications (Fundación TECNALIA Research & Innovation) |
| locations[2].source.host_organization | https://openalex.org/I4210113430 |
| locations[2].source.host_organization_name | Tecnalia |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210113430 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | conferenceObject |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://hdl.handle.net/11556/598 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5015883220 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7382-4276 |
| authorships[0].author.display_name | David Jiménez |
| authorships[0].countries | ES |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[0].affiliations[0].raw_affiliation_string | ETSI Telecomunicación. Universidad Politécnica de Madrid. Avenida Complutense 30. 28040. Madrid (Spain) |
| authorships[0].institutions[0].id | https://openalex.org/I88060688 |
| authorships[0].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[0].institutions[0].country_code | ES |
| authorships[0].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | David Jiménez-Bermejo |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | ETSI Telecomunicación. Universidad Politécnica de Madrid. Avenida Complutense 30. 28040. Madrid (Spain) |
| authorships[1].author.id | https://openalex.org/A5000455510 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0192-4817 |
| authorships[1].author.display_name | Jesús Fraile-Ardanuy |
| authorships[1].countries | ES |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[1].affiliations[0].raw_affiliation_string | ETSI Telecomunicación. Universidad Politécnica de Madrid. Avenida Complutense 30. 28040. Madrid (Spain) |
| authorships[1].institutions[0].id | https://openalex.org/I88060688 |
| authorships[1].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[1].institutions[0].country_code | ES |
| authorships[1].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jesús Fraile-Ardanuy |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | ETSI Telecomunicación. Universidad Politécnica de Madrid. Avenida Complutense 30. 28040. Madrid (Spain) |
| authorships[2].author.id | https://openalex.org/A5046185061 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9740-5597 |
| authorships[2].author.display_name | Sandra Castaño-Solis |
| authorships[2].countries | ES |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I88060688 |
| authorships[2].affiliations[0].raw_affiliation_string | ETS Ingeniería y Diseño Industrial. Universidad Politécnica de Madrid. Ronda de Valencia 3. Madrid (Spain) |
| authorships[2].institutions[0].id | https://openalex.org/I88060688 |
| authorships[2].institutions[0].ror | https://ror.org/03n6nwv02 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I88060688 |
| authorships[2].institutions[0].country_code | ES |
| authorships[2].institutions[0].display_name | Universidad Politécnica de Madrid |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Sandra Castaño-Solis |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | ETS Ingeniería y Diseño Industrial. Universidad Politécnica de Madrid. Ronda de Valencia 3. Madrid (Spain) |
| authorships[3].author.id | https://openalex.org/A5030416577 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7923-2538 |
| authorships[3].author.display_name | Julia Merino |
| authorships[3].countries | ES |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210091170, https://openalex.org/I4210113430 |
| authorships[3].affiliations[0].raw_affiliation_string | Tecnalia R&D. Parque Tecnológico de Bizkaia.C/Geldo, Edificio 700. 48160 Derio – Bizkaia, (Spain) |
| authorships[3].institutions[0].id | https://openalex.org/I4210091170 |
| authorships[3].institutions[0].ror | https://ror.org/00caq9197 |
| authorships[3].institutions[0].type | archive |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210091170 |
| authorships[3].institutions[0].country_code | ES |
| authorships[3].institutions[0].display_name | Euskadiko Parke Teknologikoa |
| authorships[3].institutions[1].id | https://openalex.org/I4210113430 |
| authorships[3].institutions[1].ror | https://ror.org/02fv8hj62 |
| authorships[3].institutions[1].type | other |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210113430 |
| authorships[3].institutions[1].country_code | ES |
| authorships[3].institutions[1].display_name | Tecnalia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Julia Merino |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Tecnalia R&D. Parque Tecnológico de Bizkaia.C/Geldo, Edificio 700. 48160 Derio – Bizkaia, (Spain) |
| authorships[4].author.id | https://openalex.org/A5084551640 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Roberto Álvaro-Hermana |
| authorships[4].countries | ES |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I136040515 |
| authorships[4].affiliations[0].raw_affiliation_string | ORKESTRA-Fundación Deusto, Universidad de Deusto, Av. de las Universidades, 24, 48007, Bilbao, (Spain) |
| authorships[4].institutions[0].id | https://openalex.org/I136040515 |
| authorships[4].institutions[0].ror | https://ror.org/00ne6sr39 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I136040515 |
| authorships[4].institutions[0].country_code | ES |
| authorships[4].institutions[0].display_name | Universidad de Deusto |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Roberto Álvaro-Hermana |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ORKESTRA-Fundación Deusto, Universidad de Deusto, Av. de las Universidades, 24, 48007, Bilbao, (Spain) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.procs.2018.04.077 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10663 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2203 |
| primary_topic.subfield.display_name | Automotive Engineering |
| primary_topic.display_name | Advanced Battery Technologies Research |
| related_works | https://openalex.org/W2790199556, https://openalex.org/W2519883542, https://openalex.org/W1875107897, https://openalex.org/W4390970815, https://openalex.org/W2098015238, https://openalex.org/W2997003398, https://openalex.org/W4388764299, https://openalex.org/W2912279478, https://openalex.org/W2088536121, https://openalex.org/W4327662979 |
| cited_by_count | 70 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 13 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 11 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 11 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 7 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.procs.2018.04.077 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120348307 |
| best_oa_location.source.issn | 1877-0509 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1877-0509 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Procedia Computer Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Procedia Computer Science |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.procs.2018.04.077 |
| primary_location.id | doi:10.1016/j.procs.2018.04.077 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120348307 |
| primary_location.source.issn | 1877-0509 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1877-0509 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Procedia Computer Science |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Procedia Computer Science |
| primary_location.landing_page_url | https://doi.org/10.1016/j.procs.2018.04.077 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2740013619, https://openalex.org/W2297206392, https://openalex.org/W2613389393, https://openalex.org/W1982990490, https://openalex.org/W1993754847, https://openalex.org/W2170425958, https://openalex.org/W2795893907, https://openalex.org/W2513919993, https://openalex.org/W2433465491, https://openalex.org/W1982452322, https://openalex.org/W1976370317, https://openalex.org/W2620679819, https://openalex.org/W2366623718, https://openalex.org/W2754463307, https://openalex.org/W2621058570 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 33, 75, 138 |
| abstract_inverted_index.54 | 128 |
| abstract_inverted_index.EV | 91 |
| abstract_inverted_index.an | 56, 90 |
| abstract_inverted_index.as | 116, 120 |
| abstract_inverted_index.be | 30 |
| abstract_inverted_index.in | 10, 145 |
| abstract_inverted_index.is | 6, 63, 71, 105 |
| abstract_inverted_index.of | 36, 39, 43, 47, 59, 68, 74, 89 |
| abstract_inverted_index.to | 1, 29, 85 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.EVs | 48 |
| abstract_inverted_index.One | 42 |
| abstract_inverted_index.SOC | 88, 119 |
| abstract_inverted_index.The | 65, 103 |
| abstract_inverted_index.all | 19, 146 |
| abstract_inverted_index.and | 110, 118 |
| abstract_inverted_index.are | 17, 25, 49 |
| abstract_inverted_index.but | 23 |
| abstract_inverted_index.car | 98 |
| abstract_inverted_index.for | 53 |
| abstract_inverted_index.has | 124 |
| abstract_inverted_index.its | 100 |
| abstract_inverted_index.the | 21, 44, 60, 72, 87, 97 |
| abstract_inverted_index.1e-6 | 144 |
| abstract_inverted_index.This | 122 |
| abstract_inverted_index.been | 125 |
| abstract_inverted_index.data | 94 |
| abstract_inverted_index.four | 111 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.main | 45, 66 |
| abstract_inverted_index.mass | 34 |
| abstract_inverted_index.mean | 139 |
| abstract_inverted_index.over | 20 |
| abstract_inverted_index.pack | 114 |
| abstract_inverted_index.real | 93, 130 |
| abstract_inverted_index.some | 27 |
| abstract_inverted_index.than | 143 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.this | 37, 69 |
| abstract_inverted_index.type | 38 |
| abstract_inverted_index.with | 78, 137 |
| abstract_inverted_index.work | 70 |
| abstract_inverted_index.(EVs) | 15 |
| abstract_inverted_index.(SOC) | 62 |
| abstract_inverted_index.Input | 80 |
| abstract_inverted_index.being | 7 |
| abstract_inverted_index.daily | 101 |
| abstract_inverted_index.error | 141 |
| abstract_inverted_index.input | 117 |
| abstract_inverted_index.lower | 142 |
| abstract_inverted_index.sales | 16 |
| abstract_inverted_index.still | 26 |
| abstract_inverted_index.their | 50 |
| abstract_inverted_index.there | 24 |
| abstract_inverted_index.urban | 2 |
| abstract_inverted_index.using | 92, 107, 127 |
| abstract_inverted_index.(NARX) | 81 |
| abstract_inverted_index.before | 32 |
| abstract_inverted_index.design | 73 |
| abstract_inverted_index.during | 99 |
| abstract_inverted_index.highly | 134 |
| abstract_inverted_index.neural | 83 |
| abstract_inverted_index.range, | 52 |
| abstract_inverted_index.reason | 55 |
| abstract_inverted_index.solved | 31 |
| abstract_inverted_index.tested | 126 |
| abstract_inverted_index.trips. | 102 |
| abstract_inverted_index.world, | 22 |
| abstract_inverted_index.battery | 113 |
| abstract_inverted_index.current | 109 |
| abstract_inverted_index.cycles, | 132 |
| abstract_inverted_index.driving | 131 |
| abstract_inverted_index.growing | 18 |
| abstract_inverted_index.limited | 51 |
| abstract_inverted_index.network | 84, 104, 123 |
| abstract_inverted_index.occurs. | 41 |
| abstract_inverted_index.output. | 121 |
| abstract_inverted_index.squared | 140 |
| abstract_inverted_index.trained | 106 |
| abstract_inverted_index.Electric | 13 |
| abstract_inverted_index.External | 79 |
| abstract_inverted_index.Vehicles | 14 |
| abstract_inverted_index.accurate | 57, 135 |
| abstract_inverted_index.adoption | 35 |
| abstract_inverted_index.estimate | 86 |
| abstract_inverted_index.promoted | 9 |
| abstract_inverted_index.results, | 136 |
| abstract_inverted_index.vehicles | 40 |
| abstract_inverted_index.voltage, | 108 |
| abstract_inverted_index.Nonlinear | 76 |
| abstract_inverted_index.currently | 8 |
| abstract_inverted_index.different | 11, 112, 129 |
| abstract_inverted_index.drawbacks | 46 |
| abstract_inverted_index.extracted | 95 |
| abstract_inverted_index.obtaining | 133 |
| abstract_inverted_index.required. | 64 |
| abstract_inverted_index.transport | 4 |
| abstract_inverted_index.artificial | 82 |
| abstract_inverted_index.challenges | 28 |
| abstract_inverted_index.countries. | 12 |
| abstract_inverted_index.estimation | 58 |
| abstract_inverted_index.pollution, | 3 |
| abstract_inverted_index.situations | 147 |
| abstract_inverted_index.contribution | 67 |
| abstract_inverted_index.temperatures | 115 |
| abstract_inverted_index.Autoregressive | 77 |
| abstract_inverted_index.electrification | 5 |
| abstract_inverted_index.state-of-charge | 61 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5000455510 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I88060688 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8399999737739563 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.94319592 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |