Using EEG Signals and AI to Predict Neurodegenerative Diseases Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/access.2025.3586363
Diseases like Alzheimer’s and Parkinson’s pose significant challenges because of their complex and progressive characteristics. Addressing these conditions requires advanced diagnostic methods that support value-based care. This study proposes NeuroPredictNet, a deep learning-based predictive framework designed for early and accurate disease identification. NeuroPredictNet integrates multimodal data—EEG, neuroimaging, genetic, and clinical features—through an attention-based fusion mechanism that dynamically weights modality contributions. We introduce the Adaptive Knowledge Integration Strategy (AKIS) to enhance model robustness by addressing modality-specific noise, data imbalance, and temporal consistency. Experimental evaluations on four benchmark datasets demonstrate that our method achieves superior prediction accuracy and interpretability compared to state-of-the-art approaches. These results underscore the framework’s clinical potential in supporting personalized, value-based neurological care.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2025.3586363
- OA Status
- gold
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412164381
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412164381Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2025.3586363Digital Object Identifier
- Title
-
Using EEG Signals and AI to Predict Neurodegenerative DiseasesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Juan Li, Dongyuan Zhang, Wei Lin, Wei LiuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2025.3586363Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2025.3586363Direct OA link when available
- Concepts
-
Electroencephalography, Computer science, Pattern recognition (psychology), Speech recognition, Artificial intelligence, Neuroscience, PsychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412164381 |
|---|---|
| doi | https://doi.org/10.1109/access.2025.3586363 |
| ids.doi | https://doi.org/10.1109/access.2025.3586363 |
| ids.openalex | https://openalex.org/W4412164381 |
| fwci | 0.0 |
| type | article |
| title | Using EEG Signals and AI to Predict Neurodegenerative Diseases |
| biblio.issue | |
| biblio.volume | 13 |
| biblio.last_page | 128894 |
| biblio.first_page | 128879 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.8654000163078308 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C522805319 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7154275178909302 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[0].display_name | Electroencephalography |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5816066265106201 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.40217655897140503 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C28490314 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3811541199684143 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[3].display_name | Speech recognition |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.37960249185562134 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C169760540 |
| concepts[5].level | 1 |
| concepts[5].score | 0.30180418491363525 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[5].display_name | Neuroscience |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.0914868712425232 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| keywords[0].id | https://openalex.org/keywords/electroencephalography |
| keywords[0].score | 0.7154275178909302 |
| keywords[0].display_name | Electroencephalography |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5816066265106201 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.40217655897140503 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/speech-recognition |
| keywords[3].score | 0.3811541199684143 |
| keywords[3].display_name | Speech recognition |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.37960249185562134 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/neuroscience |
| keywords[5].score | 0.30180418491363525 |
| keywords[5].display_name | Neuroscience |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.0914868712425232 |
| keywords[6].display_name | Psychology |
| language | en |
| locations[0].id | doi:10.1109/access.2025.3586363 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2025.3586363 |
| locations[1].id | pmh:oai:doaj.org/article:0a975c1768fc4c09b557e6f8e89fc399 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 13, Pp 128879-128894 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/0a975c1768fc4c09b557e6f8e89fc399 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100421045 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8530-9001 |
| authorships[0].author.display_name | Juan Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I111381250 |
| authorships[0].affiliations[0].raw_affiliation_string | Hebei Medical University, Shijazhuang, China |
| authorships[0].institutions[0].id | https://openalex.org/I111381250 |
| authorships[0].institutions[0].ror | https://ror.org/04eymdx19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I111381250 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Hebei Medical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Juan Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Hebei Medical University, Shijazhuang, China |
| authorships[1].author.id | https://openalex.org/A5055316643 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8400-3126 |
| authorships[1].author.display_name | Dongyuan Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I111381250 |
| authorships[1].affiliations[0].raw_affiliation_string | Hebei Medical University, Shijazhuang, China |
| authorships[1].institutions[0].id | https://openalex.org/I111381250 |
| authorships[1].institutions[0].ror | https://ror.org/04eymdx19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I111381250 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Hebei Medical University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dongyuan Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Hebei Medical University, Shijazhuang, China |
| authorships[2].author.id | https://openalex.org/A5006087695 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8643-594X |
| authorships[2].author.display_name | Wei Lin |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I111381250 |
| authorships[2].affiliations[0].raw_affiliation_string | Hebei Medical University, Shijazhuang, China |
| authorships[2].institutions[0].id | https://openalex.org/I111381250 |
| authorships[2].institutions[0].ror | https://ror.org/04eymdx19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I111381250 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Hebei Medical University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wei Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Hebei Medical University, Shijazhuang, China |
| authorships[3].author.id | https://openalex.org/A5112635815 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4738-3195 |
| authorships[3].author.display_name | Wei Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210124723 |
| authorships[3].affiliations[0].raw_affiliation_string | Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210124723 |
| authorships[3].institutions[0].ror | https://ror.org/02taaxx56 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210124723 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Maternal and Child Health Hospital of Sichuan Province |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Wei Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2025.3586363 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using EEG Signals and AI to Predict Neurodegenerative Diseases |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.8654000163078308 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2025.3586363 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2025.3586363 |
| primary_location.id | doi:10.1109/access.2025.3586363 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2025.3586363 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4389614654, https://openalex.org/W4400099050, https://openalex.org/W4315649264, https://openalex.org/W4382632670, https://openalex.org/W4403779154, https://openalex.org/W4297859554, https://openalex.org/W4220814517, https://openalex.org/W3017078364, https://openalex.org/W2999444733, https://openalex.org/W3040079326, https://openalex.org/W4295102629, https://openalex.org/W3030498904, https://openalex.org/W3123073077, https://openalex.org/W4320921125, https://openalex.org/W4401231916, https://openalex.org/W3184430885, https://openalex.org/W4387712724, https://openalex.org/W6799803585, https://openalex.org/W6800242701, https://openalex.org/W3037737151, https://openalex.org/W4377029875, https://openalex.org/W4214898695, https://openalex.org/W4288053873, https://openalex.org/W4206489456, https://openalex.org/W3189387391, https://openalex.org/W3159162141, https://openalex.org/W3121893592, https://openalex.org/W3168213370, https://openalex.org/W4394564367, https://openalex.org/W3048086369, https://openalex.org/W3007465749, https://openalex.org/W4317829684, https://openalex.org/W6787835434, https://openalex.org/W4220761417, https://openalex.org/W4388589365, https://openalex.org/W4361008305, https://openalex.org/W2258794826, https://openalex.org/W2731964405, https://openalex.org/W3119698209, https://openalex.org/W4390421903, https://openalex.org/W2753769570, https://openalex.org/W4390720875, https://openalex.org/W2593792042, https://openalex.org/W4399574593, https://openalex.org/W4311167834, https://openalex.org/W4385173997, https://openalex.org/W4399851524 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 30 |
| abstract_inverted_index.We | 60 |
| abstract_inverted_index.an | 51 |
| abstract_inverted_index.by | 72 |
| abstract_inverted_index.in | 108 |
| abstract_inverted_index.of | 9 |
| abstract_inverted_index.on | 83 |
| abstract_inverted_index.to | 68, 98 |
| abstract_inverted_index.and | 3, 12, 38, 48, 78, 95 |
| abstract_inverted_index.for | 36 |
| abstract_inverted_index.our | 89 |
| abstract_inverted_index.the | 62, 104 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.data | 76 |
| abstract_inverted_index.deep | 31 |
| abstract_inverted_index.four | 84 |
| abstract_inverted_index.like | 1 |
| abstract_inverted_index.pose | 5 |
| abstract_inverted_index.that | 22, 55, 88 |
| abstract_inverted_index.These | 101 |
| abstract_inverted_index.care. | 25, 113 |
| abstract_inverted_index.early | 37 |
| abstract_inverted_index.model | 70 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.their | 10 |
| abstract_inverted_index.these | 16 |
| abstract_inverted_index.(AKIS) | 67 |
| abstract_inverted_index.fusion | 53 |
| abstract_inverted_index.method | 90 |
| abstract_inverted_index.noise, | 75 |
| abstract_inverted_index.because | 8 |
| abstract_inverted_index.complex | 11 |
| abstract_inverted_index.disease | 40 |
| abstract_inverted_index.enhance | 69 |
| abstract_inverted_index.methods | 21 |
| abstract_inverted_index.results | 102 |
| abstract_inverted_index.support | 23 |
| abstract_inverted_index.weights | 57 |
| abstract_inverted_index.Adaptive | 63 |
| abstract_inverted_index.Diseases | 0 |
| abstract_inverted_index.Strategy | 66 |
| abstract_inverted_index.accuracy | 94 |
| abstract_inverted_index.accurate | 39 |
| abstract_inverted_index.achieves | 91 |
| abstract_inverted_index.advanced | 19 |
| abstract_inverted_index.clinical | 49, 106 |
| abstract_inverted_index.compared | 97 |
| abstract_inverted_index.datasets | 86 |
| abstract_inverted_index.designed | 35 |
| abstract_inverted_index.genetic, | 47 |
| abstract_inverted_index.modality | 58 |
| abstract_inverted_index.proposes | 28 |
| abstract_inverted_index.requires | 18 |
| abstract_inverted_index.superior | 92 |
| abstract_inverted_index.temporal | 79 |
| abstract_inverted_index.Knowledge | 64 |
| abstract_inverted_index.benchmark | 85 |
| abstract_inverted_index.framework | 34 |
| abstract_inverted_index.introduce | 61 |
| abstract_inverted_index.mechanism | 54 |
| abstract_inverted_index.potential | 107 |
| abstract_inverted_index.Addressing | 15 |
| abstract_inverted_index.addressing | 73 |
| abstract_inverted_index.challenges | 7 |
| abstract_inverted_index.conditions | 17 |
| abstract_inverted_index.diagnostic | 20 |
| abstract_inverted_index.imbalance, | 77 |
| abstract_inverted_index.integrates | 43 |
| abstract_inverted_index.multimodal | 44 |
| abstract_inverted_index.prediction | 93 |
| abstract_inverted_index.predictive | 33 |
| abstract_inverted_index.robustness | 71 |
| abstract_inverted_index.supporting | 109 |
| abstract_inverted_index.underscore | 103 |
| abstract_inverted_index.Integration | 65 |
| abstract_inverted_index.approaches. | 100 |
| abstract_inverted_index.demonstrate | 87 |
| abstract_inverted_index.dynamically | 56 |
| abstract_inverted_index.evaluations | 82 |
| abstract_inverted_index.progressive | 13 |
| abstract_inverted_index.significant | 6 |
| abstract_inverted_index.value-based | 24, 111 |
| abstract_inverted_index.Experimental | 81 |
| abstract_inverted_index.consistency. | 80 |
| abstract_inverted_index.neurological | 112 |
| abstract_inverted_index.neuroimaging, | 46 |
| abstract_inverted_index.personalized, | 110 |
| abstract_inverted_index.contributions. | 59 |
| abstract_inverted_index.learning-based | 32 |
| abstract_inverted_index.NeuroPredictNet | 42 |
| abstract_inverted_index.attention-based | 52 |
| abstract_inverted_index.identification. | 41 |
| abstract_inverted_index.NeuroPredictNet, | 29 |
| abstract_inverted_index.characteristics. | 14 |
| abstract_inverted_index.data—EEG, | 45 |
| abstract_inverted_index.interpretability | 96 |
| abstract_inverted_index.state-of-the-art | 99 |
| abstract_inverted_index.modality-specific | 74 |
| abstract_inverted_index.Alzheimer’s | 2 |
| abstract_inverted_index.Parkinson’s | 4 |
| abstract_inverted_index.framework’s | 105 |
| abstract_inverted_index.features—through | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.28415071 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |