Using feature selection to evaluate pathological speech after training with a serious game Article Swipe
Loes van Bemmel
,
Catia Cucchiarini
,
Helmer Strik
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.36505/exling-2021/12/0062/000535
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.36505/exling-2021/12/0062/000535
To evaluate the effectiveness of speech therapy, speech features before and after treatment can be compared, focussing on those features that changed most during treatment.In the current study acoustic features were automatically extracted from speech of patients affected by Parkinson's Disease who had received speech treatment.Praat and openSMILE were used for feature extraction.Through feature selection, the top ten most characterizing features for pre vs. post-treatment were found.Further analysis of these features confirmed that after treatment the speakers spoke louder with lower pitch, which were the goals of the treatment.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.36505/exling-2021/12/0062/000535
- https://doi.org/10.36505/exling-2021/12/0062/000535
- OA Status
- bronze
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4327494395
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4327494395Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36505/exling-2021/12/0062/000535Digital Object Identifier
- Title
-
Using feature selection to evaluate pathological speech after training with a serious gameWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-01Full publication date if available
- Authors
-
Loes van Bemmel, Catia Cucchiarini, Helmer StrikList of authors in order
- Landing page
-
https://doi.org/10.36505/exling-2021/12/0062/000535Publisher landing page
- PDF URL
-
https://doi.org/10.36505/exling-2021/12/0062/000535Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.36505/exling-2021/12/0062/000535Direct OA link when available
- Concepts
-
Computer science, Training (meteorology), Feature selection, Selection (genetic algorithm), Feature (linguistics), Speech recognition, Artificial intelligence, Serious game, Natural language processing, Multimedia, Linguistics, Geography, Philosophy, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4327494395 |
|---|---|
| doi | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| ids.doi | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| ids.openalex | https://openalex.org/W4327494395 |
| fwci | 0.0 |
| type | article |
| title | Using feature selection to evaluate pathological speech after training with a serious game |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 248 |
| biblio.first_page | 245 |
| topics[0].id | https://openalex.org/T10201 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.2973000109195709 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Speech Recognition and Synthesis |
| topics[1].id | https://openalex.org/T12290 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.2635999917984009 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Human Motion and Animation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7146134376525879 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2777211547 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6549443006515503 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[1].display_name | Training (meteorology) |
| concepts[2].id | https://openalex.org/C148483581 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6548572182655334 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[2].display_name | Feature selection |
| concepts[3].id | https://openalex.org/C81917197 |
| concepts[3].level | 2 |
| concepts[3].score | 0.59796142578125 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[3].display_name | Selection (genetic algorithm) |
| concepts[4].id | https://openalex.org/C2776401178 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4915986955165863 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[4].display_name | Feature (linguistics) |
| concepts[5].id | https://openalex.org/C28490314 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47732359170913696 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[5].display_name | Speech recognition |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4760313332080841 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C3018769082 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4400941729545593 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1506693 |
| concepts[7].display_name | Serious game |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3647724986076355 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C49774154 |
| concepts[9].level | 1 |
| concepts[9].score | 0.20696744322776794 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q131765 |
| concepts[9].display_name | Multimedia |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10768118500709534 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.057312220335006714 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7146134376525879 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/training |
| keywords[1].score | 0.6549443006515503 |
| keywords[1].display_name | Training (meteorology) |
| keywords[2].id | https://openalex.org/keywords/feature-selection |
| keywords[2].score | 0.6548572182655334 |
| keywords[2].display_name | Feature selection |
| keywords[3].id | https://openalex.org/keywords/selection |
| keywords[3].score | 0.59796142578125 |
| keywords[3].display_name | Selection (genetic algorithm) |
| keywords[4].id | https://openalex.org/keywords/feature |
| keywords[4].score | 0.4915986955165863 |
| keywords[4].display_name | Feature (linguistics) |
| keywords[5].id | https://openalex.org/keywords/speech-recognition |
| keywords[5].score | 0.47732359170913696 |
| keywords[5].display_name | Speech recognition |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4760313332080841 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/serious-game |
| keywords[7].score | 0.4400941729545593 |
| keywords[7].display_name | Serious game |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.3647724986076355 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/multimedia |
| keywords[9].score | 0.20696744322776794 |
| keywords[9].display_name | Multimedia |
| keywords[10].id | https://openalex.org/keywords/linguistics |
| keywords[10].score | 0.10768118500709534 |
| keywords[10].display_name | Linguistics |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.057312220335006714 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.36505/exling-2021/12/0062/000535 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210239876 |
| locations[0].source.issn | 2529-1092 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2529-1092 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ExLing Conferences |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of International Conference of Experimental Linguistics |
| locations[0].landing_page_url | http://doi.org/10.36505/exling-2021/12/0062/000535 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020471966 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Loes van Bemmel |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I145872427 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Artificial Intelligence, Radboud University, The Netherlands |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I145872427 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Computing and Information Sciences, Radboud University, The Netherlands |
| authorships[0].institutions[0].id | https://openalex.org/I145872427 |
| authorships[0].institutions[0].ror | https://ror.org/016xsfp80 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I145872427 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Radboud University Nijmegen |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Loes van Bemmel |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Artificial Intelligence, Radboud University, The Netherlands, Institute for Computing and Information Sciences, Radboud University, The Netherlands |
| authorships[1].author.id | https://openalex.org/A5006678637 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5908-0824 |
| authorships[1].author.display_name | Catia Cucchiarini |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145872427 |
| authorships[1].affiliations[0].raw_affiliation_string | Centre for Language and Speech Technology, Radboud University, The Netherlands |
| authorships[1].institutions[0].id | https://openalex.org/I145872427 |
| authorships[1].institutions[0].ror | https://ror.org/016xsfp80 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145872427 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Radboud University Nijmegen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Catia Cucchiarini |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Centre for Language and Speech Technology, Radboud University, The Netherlands |
| authorships[2].author.id | https://openalex.org/A5019585114 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1722-3465 |
| authorships[2].author.display_name | Helmer Strik |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145872427 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Language Studies, Radboud University, The Netherlands |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I145872427 |
| authorships[2].affiliations[1].raw_affiliation_string | Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I145872427 |
| authorships[2].affiliations[2].raw_affiliation_string | Centre for Language and Speech Technology, Radboud University, The Netherlands |
| authorships[2].institutions[0].id | https://openalex.org/I145872427 |
| authorships[2].institutions[0].ror | https://ror.org/016xsfp80 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145872427 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Radboud University Nijmegen |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Helmer Strik |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Language Studies, Radboud University, The Netherlands, Centre for Language and Speech Technology, Radboud University, The Netherlands, Donders Institute for Brain, Cognition and Behaviour, Radboud University, The Netherlands |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using feature selection to evaluate pathological speech after training with a serious game |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10201 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.2973000109195709 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Speech Recognition and Synthesis |
| related_works | https://openalex.org/W2611614995, https://openalex.org/W2368651715, https://openalex.org/W2789919619, https://openalex.org/W2955698379, https://openalex.org/W1552159754, https://openalex.org/W2148757832, https://openalex.org/W4321496520, https://openalex.org/W2293457016, https://openalex.org/W2606073172, https://openalex.org/W3107474891 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36505/exling-2021/12/0062/000535 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210239876 |
| best_oa_location.source.issn | 2529-1092 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2529-1092 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ExLing Conferences |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of International Conference of Experimental Linguistics |
| best_oa_location.landing_page_url | http://doi.org/10.36505/exling-2021/12/0062/000535 |
| primary_location.id | doi:10.36505/exling-2021/12/0062/000535 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210239876 |
| primary_location.source.issn | 2529-1092 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2529-1092 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ExLing Conferences |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.36505/exling-2021/12/0062/000535 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of International Conference of Experimental Linguistics |
| primary_location.landing_page_url | http://doi.org/10.36505/exling-2021/12/0062/000535 |
| publication_date | 2021-12-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2037760741, https://openalex.org/W2182468807, https://openalex.org/W2239141610, https://openalex.org/W2981666567, https://openalex.org/W2886528649 |
| referenced_works_count | 5 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.of | 4, 35, 68, 86 |
| abstract_inverted_index.on | 17 |
| abstract_inverted_index.and | 10, 46 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 50, 61 |
| abstract_inverted_index.had | 42 |
| abstract_inverted_index.pre | 62 |
| abstract_inverted_index.ten | 57 |
| abstract_inverted_index.the | 2, 25, 55, 75, 84, 87 |
| abstract_inverted_index.top | 56 |
| abstract_inverted_index.vs. | 63 |
| abstract_inverted_index.who | 41 |
| abstract_inverted_index.from | 33 |
| abstract_inverted_index.most | 22, 58 |
| abstract_inverted_index.that | 20, 72 |
| abstract_inverted_index.used | 49 |
| abstract_inverted_index.were | 30, 48, 65, 83 |
| abstract_inverted_index.with | 79 |
| abstract_inverted_index.after | 11, 73 |
| abstract_inverted_index.goals | 85 |
| abstract_inverted_index.lower | 80 |
| abstract_inverted_index.spoke | 77 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.these | 69 |
| abstract_inverted_index.those | 18 |
| abstract_inverted_index.which | 82 |
| abstract_inverted_index.before | 9 |
| abstract_inverted_index.during | 23 |
| abstract_inverted_index.louder | 78 |
| abstract_inverted_index.pitch, | 81 |
| abstract_inverted_index.speech | 5, 7, 34, 44 |
| abstract_inverted_index.Disease | 40 |
| abstract_inverted_index.changed | 21 |
| abstract_inverted_index.current | 26 |
| abstract_inverted_index.feature | 51, 53 |
| abstract_inverted_index.acoustic | 28 |
| abstract_inverted_index.affected | 37 |
| abstract_inverted_index.analysis | 67 |
| abstract_inverted_index.evaluate | 1 |
| abstract_inverted_index.features | 8, 19, 29, 60, 70 |
| abstract_inverted_index.patients | 36 |
| abstract_inverted_index.received | 43 |
| abstract_inverted_index.speakers | 76 |
| abstract_inverted_index.therapy, | 6 |
| abstract_inverted_index.compared, | 15 |
| abstract_inverted_index.confirmed | 71 |
| abstract_inverted_index.extracted | 32 |
| abstract_inverted_index.focussing | 16 |
| abstract_inverted_index.openSMILE | 47 |
| abstract_inverted_index.treatment | 12, 74 |
| abstract_inverted_index.selection, | 54 |
| abstract_inverted_index.treatment. | 88 |
| abstract_inverted_index.Parkinson's | 39 |
| abstract_inverted_index.treatment.In | 24 |
| abstract_inverted_index.automatically | 31 |
| abstract_inverted_index.effectiveness | 3 |
| abstract_inverted_index.found.Further | 66 |
| abstract_inverted_index.characterizing | 59 |
| abstract_inverted_index.post-treatment | 64 |
| abstract_inverted_index.treatment.Praat | 45 |
| abstract_inverted_index.extraction.Through | 52 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.25820943 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |