Using generative AI for reading question creation based on PIRLS 2011 framework Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1080/2331186x.2025.2458653
This study examined the use of ChatGPT 3.5 for reading questions generation based on four processes of comprehension of PIRLS 2011 assessment framework. Using an instrumental case study approach and a usability testing method, we employed an input story text to assess ChatGPT 3.5’s effectiveness. A total of twenty questions were generated and evaluated using specific criteria. We analyzed the content of the obtained questions and the quality of revised questions after further adjustment instructions. Findings reveal that ChatGPT 3.5 excels at generating factual questions, leveraging explicit details from text, and demonstrates improvement in interpret-and-integrate questions when detailed instructions are provided. However, it shows significant limitations with higher-order questions requiring inference and evaluation, where contextual accuracy and deeper comprehension are critical. Statistical analysis revealed significant differences between question types (p = 0.004). Thematic analysis highlighted recurring challenges, such as content misalignment, oversimplification, and difficulty processing complex or nuanced user requirements. Tips for users on potential issues and ethical concerns were also discussed. Despite limitations, ChatGPT 3.5 remains a valuable tool for educators and students to enhance question creation productivity. These findings contribute to understanding generative AI’s role in education and provide actionable insights for improving question generation efficiency.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/2331186x.2025.2458653
- OA Status
- gold
- Cited By
- 1
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406964436
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406964436Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/2331186x.2025.2458653Digital Object Identifier
- Title
-
Using generative AI for reading question creation based on PIRLS 2011 frameworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-30Full publication date if available
- Authors
-
Zhipeng Wen, Samuel Kai Wah ChuList of authors in order
- Landing page
-
https://doi.org/10.1080/2331186x.2025.2458653Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1080/2331186x.2025.2458653Direct OA link when available
- Concepts
-
Generative grammar, Reading (process), Psychology, Generative model, Mathematics education, Computer science, Artificial intelligence, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406964436 |
|---|---|
| doi | https://doi.org/10.1080/2331186x.2025.2458653 |
| ids.doi | https://doi.org/10.1080/2331186x.2025.2458653 |
| ids.openalex | https://openalex.org/W4406964436 |
| fwci | 4.81974515 |
| type | article |
| title | Using generative AI for reading question creation based on PIRLS 2011 framework |
| biblio.issue | 1 |
| biblio.volume | 12 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9797000288963318 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11902 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9491000175476074 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| topics[2].id | https://openalex.org/T10731 |
| topics[2].field.id | https://openalex.org/fields/32 |
| topics[2].field.display_name | Psychology |
| topics[2].score | 0.9223999977111816 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3204 |
| topics[2].subfield.display_name | Developmental and Educational Psychology |
| topics[2].display_name | Educational Games and Gamification |
| is_xpac | False |
| apc_list.value | 950 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1165 |
| apc_paid.value | 950 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1165 |
| concepts[0].id | https://openalex.org/C39890363 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7097705602645874 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[0].display_name | Generative grammar |
| concepts[1].id | https://openalex.org/C554936623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5682889819145203 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q199657 |
| concepts[1].display_name | Reading (process) |
| concepts[2].id | https://openalex.org/C15744967 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4718237817287445 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[2].display_name | Psychology |
| concepts[3].id | https://openalex.org/C167966045 |
| concepts[3].level | 3 |
| concepts[3].score | 0.45782312750816345 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5532625 |
| concepts[3].display_name | Generative model |
| concepts[4].id | https://openalex.org/C145420912 |
| concepts[4].level | 1 |
| concepts[4].score | 0.44141221046447754 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q853077 |
| concepts[4].display_name | Mathematics education |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.42120933532714844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32341161370277405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C41895202 |
| concepts[7].level | 1 |
| concepts[7].score | 0.20869314670562744 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[7].display_name | Linguistics |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/generative-grammar |
| keywords[0].score | 0.7097705602645874 |
| keywords[0].display_name | Generative grammar |
| keywords[1].id | https://openalex.org/keywords/reading |
| keywords[1].score | 0.5682889819145203 |
| keywords[1].display_name | Reading (process) |
| keywords[2].id | https://openalex.org/keywords/psychology |
| keywords[2].score | 0.4718237817287445 |
| keywords[2].display_name | Psychology |
| keywords[3].id | https://openalex.org/keywords/generative-model |
| keywords[3].score | 0.45782312750816345 |
| keywords[3].display_name | Generative model |
| keywords[4].id | https://openalex.org/keywords/mathematics-education |
| keywords[4].score | 0.44141221046447754 |
| keywords[4].display_name | Mathematics education |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.42120933532714844 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.32341161370277405 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/linguistics |
| keywords[7].score | 0.20869314670562744 |
| keywords[7].display_name | Linguistics |
| language | en |
| locations[0].id | doi:10.1080/2331186x.2025.2458653 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764918247 |
| locations[0].source.issn | 2331-186X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2331-186X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cogent Education |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cogent Education |
| locations[0].landing_page_url | https://doi.org/10.1080/2331186x.2025.2458653 |
| locations[1].id | pmh:oai:eprints.gla.ac.uk:346351 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400411 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Enlighten: Publications (The University of Glasgow) |
| locations[1].source.host_organization | https://openalex.org/I7882870 |
| locations[1].source.host_organization_name | University of Glasgow |
| locations[1].source.host_organization_lineage | https://openalex.org/I7882870 |
| locations[1].license | |
| locations[1].pdf_url | https://eprints.gla.ac.uk/346351/1/346351.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | PeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://eprints.gla.ac.uk/view/author/67950.html> |
| locations[2].id | pmh:oai:doaj.org/article:d9e7ccbe959043c5974200951b686590 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cogent Education, Vol 12, Iss 1 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/d9e7ccbe959043c5974200951b686590 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5090994765 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2393-6931 |
| authorships[0].author.display_name | Zhipeng Wen |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I7882870 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Education, University of Glasgow, Glasgow, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I7882870 |
| authorships[0].institutions[0].ror | https://ror.org/00vtgdb53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I7882870 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Glasgow |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhipeng Wen |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Education, University of Glasgow, Glasgow, United Kingdom |
| authorships[1].author.id | https://openalex.org/A5013895875 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1557-2776 |
| authorships[1].author.display_name | Samuel Kai Wah Chu |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I8679417 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Nursing and Health Studies, Hong Kong Metropolitan University (HKMU), Hong Kong SAR, China |
| authorships[1].institutions[0].id | https://openalex.org/I8679417 |
| authorships[1].institutions[0].ror | https://ror.org/0349bsm71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I8679417 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Metropolitan University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Samuel Kai Wah Chu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Nursing and Health Studies, Hong Kong Metropolitan University (HKMU), Hong Kong SAR, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1080/2331186x.2025.2458653 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using generative AI for reading question creation based on PIRLS 2011 framework |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9797000288963318 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4365211920, https://openalex.org/W3014948380, https://openalex.org/W4391584540, https://openalex.org/W4380551139, https://openalex.org/W4317695495, https://openalex.org/W4395044357, https://openalex.org/W4287117424, https://openalex.org/W4387506531, https://openalex.org/W2087346071, https://openalex.org/W2967848559 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1080/2331186x.2025.2458653 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764918247 |
| best_oa_location.source.issn | 2331-186X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2331-186X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cogent Education |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cogent Education |
| best_oa_location.landing_page_url | https://doi.org/10.1080/2331186x.2025.2458653 |
| primary_location.id | doi:10.1080/2331186x.2025.2458653 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764918247 |
| primary_location.source.issn | 2331-186X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2331-186X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cogent Education |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cogent Education |
| primary_location.landing_page_url | https://doi.org/10.1080/2331186x.2025.2458653 |
| publication_date | 2025-01-30 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4323313947, https://openalex.org/W4318257512, https://openalex.org/W1979290264, https://openalex.org/W4384464487, https://openalex.org/W6776680618, https://openalex.org/W6605764565, https://openalex.org/W7061537676, https://openalex.org/W4226228060, https://openalex.org/W2809083884, https://openalex.org/W2937444804, https://openalex.org/W4386913199, https://openalex.org/W4323655724, https://openalex.org/W2762009853, https://openalex.org/W2963661590, https://openalex.org/W2989613245, https://openalex.org/W4252827872, https://openalex.org/W4392708054, https://openalex.org/W4386098991, https://openalex.org/W6781349121, https://openalex.org/W4388178599, https://openalex.org/W4246714024, https://openalex.org/W4386608988, https://openalex.org/W3199501816, https://openalex.org/W4394585927, https://openalex.org/W254444275, https://openalex.org/W4366489368, https://openalex.org/W4395957952, https://openalex.org/W3094264786, https://openalex.org/W2981957856, https://openalex.org/W4221146870, https://openalex.org/W3021512829, https://openalex.org/W141807713, https://openalex.org/W4389437528, https://openalex.org/W4285155190, https://openalex.org/W4229590402, https://openalex.org/W3045431091 |
| referenced_works_count | 36 |
| abstract_inverted_index.= | 130 |
| abstract_inverted_index.A | 45 |
| abstract_inverted_index.a | 30, 167 |
| abstract_inverted_index.(p | 129 |
| abstract_inverted_index.We | 57 |
| abstract_inverted_index.an | 24, 36 |
| abstract_inverted_index.as | 138 |
| abstract_inverted_index.at | 81 |
| abstract_inverted_index.in | 93, 187 |
| abstract_inverted_index.it | 102 |
| abstract_inverted_index.of | 5, 16, 18, 47, 61, 68 |
| abstract_inverted_index.on | 13, 153 |
| abstract_inverted_index.or | 146 |
| abstract_inverted_index.to | 40, 174, 182 |
| abstract_inverted_index.we | 34 |
| abstract_inverted_index.3.5 | 7, 79, 165 |
| abstract_inverted_index.and | 29, 52, 65, 90, 111, 116, 142, 156, 172, 189 |
| abstract_inverted_index.are | 99, 119 |
| abstract_inverted_index.for | 8, 151, 170, 193 |
| abstract_inverted_index.the | 3, 59, 62, 66 |
| abstract_inverted_index.use | 4 |
| abstract_inverted_index.2011 | 20 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.Tips | 150 |
| abstract_inverted_index.also | 160 |
| abstract_inverted_index.case | 26 |
| abstract_inverted_index.four | 14 |
| abstract_inverted_index.from | 88 |
| abstract_inverted_index.role | 186 |
| abstract_inverted_index.such | 137 |
| abstract_inverted_index.text | 39 |
| abstract_inverted_index.that | 77 |
| abstract_inverted_index.tool | 169 |
| abstract_inverted_index.user | 148 |
| abstract_inverted_index.were | 50, 159 |
| abstract_inverted_index.when | 96 |
| abstract_inverted_index.with | 106 |
| abstract_inverted_index.PIRLS | 19 |
| abstract_inverted_index.These | 179 |
| abstract_inverted_index.Using | 23 |
| abstract_inverted_index.after | 71 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.input | 37 |
| abstract_inverted_index.shows | 103 |
| abstract_inverted_index.story | 38 |
| abstract_inverted_index.study | 1, 27 |
| abstract_inverted_index.text, | 89 |
| abstract_inverted_index.total | 46 |
| abstract_inverted_index.types | 128 |
| abstract_inverted_index.users | 152 |
| abstract_inverted_index.using | 54 |
| abstract_inverted_index.where | 113 |
| abstract_inverted_index.AI’s | 185 |
| abstract_inverted_index.assess | 41 |
| abstract_inverted_index.deeper | 117 |
| abstract_inverted_index.excels | 80 |
| abstract_inverted_index.issues | 155 |
| abstract_inverted_index.reveal | 76 |
| abstract_inverted_index.twenty | 48 |
| abstract_inverted_index.0.004). | 131 |
| abstract_inverted_index.3.5’s | 43 |
| abstract_inverted_index.ChatGPT | 6, 42, 78, 164 |
| abstract_inverted_index.Despite | 162 |
| abstract_inverted_index.between | 126 |
| abstract_inverted_index.complex | 145 |
| abstract_inverted_index.content | 60, 139 |
| abstract_inverted_index.details | 87 |
| abstract_inverted_index.enhance | 175 |
| abstract_inverted_index.ethical | 157 |
| abstract_inverted_index.factual | 83 |
| abstract_inverted_index.further | 72 |
| abstract_inverted_index.method, | 33 |
| abstract_inverted_index.nuanced | 147 |
| abstract_inverted_index.provide | 190 |
| abstract_inverted_index.quality | 67 |
| abstract_inverted_index.reading | 9 |
| abstract_inverted_index.remains | 166 |
| abstract_inverted_index.revised | 69 |
| abstract_inverted_index.testing | 32 |
| abstract_inverted_index.Findings | 75 |
| abstract_inverted_index.However, | 101 |
| abstract_inverted_index.Thematic | 132 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.analysis | 122, 133 |
| abstract_inverted_index.analyzed | 58 |
| abstract_inverted_index.approach | 28 |
| abstract_inverted_index.concerns | 158 |
| abstract_inverted_index.creation | 177 |
| abstract_inverted_index.detailed | 97 |
| abstract_inverted_index.employed | 35 |
| abstract_inverted_index.examined | 2 |
| abstract_inverted_index.explicit | 86 |
| abstract_inverted_index.findings | 180 |
| abstract_inverted_index.insights | 192 |
| abstract_inverted_index.obtained | 63 |
| abstract_inverted_index.question | 127, 176, 195 |
| abstract_inverted_index.revealed | 123 |
| abstract_inverted_index.specific | 55 |
| abstract_inverted_index.students | 173 |
| abstract_inverted_index.valuable | 168 |
| abstract_inverted_index.criteria. | 56 |
| abstract_inverted_index.critical. | 120 |
| abstract_inverted_index.education | 188 |
| abstract_inverted_index.educators | 171 |
| abstract_inverted_index.evaluated | 53 |
| abstract_inverted_index.generated | 51 |
| abstract_inverted_index.improving | 194 |
| abstract_inverted_index.inference | 110 |
| abstract_inverted_index.potential | 154 |
| abstract_inverted_index.processes | 15 |
| abstract_inverted_index.provided. | 100 |
| abstract_inverted_index.questions | 10, 49, 64, 70, 95, 108 |
| abstract_inverted_index.recurring | 135 |
| abstract_inverted_index.requiring | 109 |
| abstract_inverted_index.usability | 31 |
| abstract_inverted_index.actionable | 191 |
| abstract_inverted_index.adjustment | 73 |
| abstract_inverted_index.assessment | 21 |
| abstract_inverted_index.contextual | 114 |
| abstract_inverted_index.contribute | 181 |
| abstract_inverted_index.difficulty | 143 |
| abstract_inverted_index.discussed. | 161 |
| abstract_inverted_index.framework. | 22 |
| abstract_inverted_index.generating | 82 |
| abstract_inverted_index.generation | 11, 196 |
| abstract_inverted_index.generative | 184 |
| abstract_inverted_index.leveraging | 85 |
| abstract_inverted_index.processing | 144 |
| abstract_inverted_index.questions, | 84 |
| abstract_inverted_index.Statistical | 121 |
| abstract_inverted_index.challenges, | 136 |
| abstract_inverted_index.differences | 125 |
| abstract_inverted_index.efficiency. | 197 |
| abstract_inverted_index.evaluation, | 112 |
| abstract_inverted_index.highlighted | 134 |
| abstract_inverted_index.improvement | 92 |
| abstract_inverted_index.limitations | 105 |
| abstract_inverted_index.significant | 104, 124 |
| abstract_inverted_index.demonstrates | 91 |
| abstract_inverted_index.higher-order | 107 |
| abstract_inverted_index.instructions | 98 |
| abstract_inverted_index.instrumental | 25 |
| abstract_inverted_index.limitations, | 163 |
| abstract_inverted_index.comprehension | 17, 118 |
| abstract_inverted_index.instructions. | 74 |
| abstract_inverted_index.misalignment, | 140 |
| abstract_inverted_index.productivity. | 178 |
| abstract_inverted_index.requirements. | 149 |
| abstract_inverted_index.understanding | 183 |
| abstract_inverted_index.effectiveness. | 44 |
| abstract_inverted_index.oversimplification, | 141 |
| abstract_inverted_index.interpret-and-integrate | 94 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5090994765 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I7882870 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.92673561 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |