Using Historical Data for Retrospective Prediction of Rainfall In the Midwest Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.13016/m2pk07539
The Missouri River Basin (MRB) is an important food-producing region in the United States and Canada. Climate variability and water availability affect crops production in this region. Past climate data have been recorded at various locations in the basin over a period of ten years. We use the data for a retrospective prediction of rainfall. As the dimension of the data is relatively large, a sufficient dimension reduction approach is used to reduce the dimensionality of the data while preserving the regression information pertinent to rainfall. We use the nascent dimension reduction methodology called Minimum Average Deviance Estimation or MADE to reduce the dimensionality of the climate data. Since MADE is still a tool in development, we explored two of its intrinsic prediction methods and compared them to the Nadaraya-Watson prediction approach by a cross-validation. A parallel implementation of MADE and its prediction methods on a high performance computer were carried out. A performance study was performed along with the application of the best prediction method to the MRB climate data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://hdl.handle.net/11603/11325
- http://hdl.handle.net/11603/11325
- OA Status
- green
- Related Works
- 1
- OpenAlex ID
- https://openalex.org/W3013027332
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3013027332Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13016/m2pk07539Digital Object Identifier
- Title
-
Using Historical Data for Retrospective Prediction of Rainfall In the MidwestWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-09-19Full publication date if available
- Authors
-
Ephraim Alfa, Huiyi Chen, Kristen J. Hansen, Mathew Prindle, Sai K. Popuri, Nadeesri Wijekoon, Kofi P. Adragni, Amita MehtaList of authors in order
- Landing page
-
https://hdl.handle.net/11603/11325Publisher landing page
- PDF URL
-
https://hdl.handle.net/11603/11325Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hdl.handle.net/11603/11325Direct OA link when available
- Concepts
-
Climatology, Geography, Computer science, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
1Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3013027332 |
|---|---|
| doi | https://doi.org/10.13016/m2pk07539 |
| ids.doi | https://doi.org/10.13016/m2pk07539 |
| ids.mag | 3013027332 |
| ids.openalex | https://openalex.org/W3013027332 |
| fwci | |
| type | article |
| title | Using Historical Data for Retrospective Prediction of Rainfall In the Midwest |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11186 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.986299991607666 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Hydrology and Drought Analysis |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T11490 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9315999746322632 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Hydrological Forecasting Using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C49204034 |
| concepts[0].level | 1 |
| concepts[0].score | 0.3595736622810364 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[0].display_name | Climatology |
| concepts[1].id | https://openalex.org/C205649164 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3324962258338928 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[1].display_name | Geography |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.3208194375038147 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.24480265378952026 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/climatology |
| keywords[0].score | 0.3595736622810364 |
| keywords[0].display_name | Climatology |
| keywords[1].id | https://openalex.org/keywords/geography |
| keywords[1].score | 0.3324962258338928 |
| keywords[1].display_name | Geography |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.3208194375038147 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.24480265378952026 |
| keywords[3].display_name | Geology |
| language | en |
| locations[0].id | pmh:oai:mdsoar.org:11603/11325 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402556 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Maryland Shared Open Access Repository (USMAI Consortium) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | http://hdl.handle.net/11603/11325 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | Text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://hdl.handle.net/11603/11325 |
| locations[1].id | doi:10.13016/m2pk07539 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402644 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Digital Repository at the University of Maryland (University of Maryland College Park) |
| locations[1].source.host_organization | https://openalex.org/I66946132 |
| locations[1].source.host_organization_name | University of Maryland, College Park |
| locations[1].source.host_organization_lineage | https://openalex.org/I66946132 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.13016/m2pk07539 |
| locations[2].id | mag:3013027332 |
| locations[2].is_oa | False |
| locations[2].source | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://mdsoar.org/handle/11603/11325 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5080868780 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ephraim Alfa |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ephraim Alfa |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101107817 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Huiyi Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Huiyi Chen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5110078879 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kristen J. Hansen |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kristen Hansen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5068464988 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Mathew Prindle |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mathew Prindle |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5017024924 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5151-9721 |
| authorships[4].author.display_name | Sai K. Popuri |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Sai Popuri |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5031391328 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Nadeesri Wijekoon |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Nadeesri Wijekoon |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5000372029 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6600-6788 |
| authorships[6].author.display_name | Kofi P. Adragni |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kofi Adragni |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5113947299 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Amita Mehta |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Amita Mehta |
| authorships[7].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://hdl.handle.net/11603/11325 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Historical Data for Retrospective Prediction of Rainfall In the Midwest |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11186 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.986299991607666 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Hydrology and Drought Analysis |
| related_works | https://openalex.org/W2350711337 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:mdsoar.org:11603/11325 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402556 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Maryland Shared Open Access Repository (USMAI Consortium) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://hdl.handle.net/11603/11325 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/11603/11325 |
| primary_location.id | pmh:oai:mdsoar.org:11603/11325 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402556 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Maryland Shared Open Access Repository (USMAI Consortium) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | http://hdl.handle.net/11603/11325 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | Text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://hdl.handle.net/11603/11325 |
| publication_date | 2018-09-19 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 135, 152 |
| abstract_inverted_index.a | 40, 50, 64, 112, 133, 145 |
| abstract_inverted_index.As | 55 |
| abstract_inverted_index.We | 45, 86 |
| abstract_inverted_index.an | 6 |
| abstract_inverted_index.at | 33 |
| abstract_inverted_index.by | 132 |
| abstract_inverted_index.in | 10, 24, 36, 114 |
| abstract_inverted_index.is | 5, 61, 69, 110 |
| abstract_inverted_index.of | 42, 53, 58, 75, 104, 119, 138, 161 |
| abstract_inverted_index.on | 144 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 71, 84, 100, 127, 166 |
| abstract_inverted_index.we | 116 |
| abstract_inverted_index.MRB | 168 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 14, 18, 124, 140 |
| abstract_inverted_index.for | 49 |
| abstract_inverted_index.its | 120, 141 |
| abstract_inverted_index.ten | 43 |
| abstract_inverted_index.the | 11, 37, 47, 56, 59, 73, 76, 80, 88, 102, 105, 128, 159, 162, 167 |
| abstract_inverted_index.two | 118 |
| abstract_inverted_index.use | 46, 87 |
| abstract_inverted_index.was | 155 |
| abstract_inverted_index.MADE | 99, 109, 139 |
| abstract_inverted_index.Past | 27 |
| abstract_inverted_index.been | 31 |
| abstract_inverted_index.best | 163 |
| abstract_inverted_index.data | 29, 48, 60, 77 |
| abstract_inverted_index.have | 30 |
| abstract_inverted_index.high | 146 |
| abstract_inverted_index.out. | 151 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.them | 126 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.tool | 113 |
| abstract_inverted_index.used | 70 |
| abstract_inverted_index.were | 149 |
| abstract_inverted_index.with | 158 |
| abstract_inverted_index.(MRB) | 4 |
| abstract_inverted_index.Basin | 3 |
| abstract_inverted_index.River | 2 |
| abstract_inverted_index.Since | 108 |
| abstract_inverted_index.along | 157 |
| abstract_inverted_index.basin | 38 |
| abstract_inverted_index.crops | 22 |
| abstract_inverted_index.data. | 107, 170 |
| abstract_inverted_index.still | 111 |
| abstract_inverted_index.study | 154 |
| abstract_inverted_index.water | 19 |
| abstract_inverted_index.while | 78 |
| abstract_inverted_index.States | 13 |
| abstract_inverted_index.United | 12 |
| abstract_inverted_index.affect | 21 |
| abstract_inverted_index.called | 93 |
| abstract_inverted_index.large, | 63 |
| abstract_inverted_index.method | 165 |
| abstract_inverted_index.period | 41 |
| abstract_inverted_index.reduce | 72, 101 |
| abstract_inverted_index.region | 9 |
| abstract_inverted_index.years. | 44 |
| abstract_inverted_index.Average | 95 |
| abstract_inverted_index.Canada. | 15 |
| abstract_inverted_index.Climate | 16 |
| abstract_inverted_index.Minimum | 94 |
| abstract_inverted_index.carried | 150 |
| abstract_inverted_index.climate | 28, 106, 169 |
| abstract_inverted_index.methods | 123, 143 |
| abstract_inverted_index.nascent | 89 |
| abstract_inverted_index.region. | 26 |
| abstract_inverted_index.various | 34 |
| abstract_inverted_index.Deviance | 96 |
| abstract_inverted_index.Missouri | 1 |
| abstract_inverted_index.approach | 68, 131 |
| abstract_inverted_index.compared | 125 |
| abstract_inverted_index.computer | 148 |
| abstract_inverted_index.explored | 117 |
| abstract_inverted_index.parallel | 136 |
| abstract_inverted_index.recorded | 32 |
| abstract_inverted_index.dimension | 57, 66, 90 |
| abstract_inverted_index.important | 7 |
| abstract_inverted_index.intrinsic | 121 |
| abstract_inverted_index.locations | 35 |
| abstract_inverted_index.performed | 156 |
| abstract_inverted_index.pertinent | 83 |
| abstract_inverted_index.rainfall. | 54, 85 |
| abstract_inverted_index.reduction | 67, 91 |
| abstract_inverted_index.Estimation | 97 |
| abstract_inverted_index.prediction | 52, 122, 130, 142, 164 |
| abstract_inverted_index.preserving | 79 |
| abstract_inverted_index.production | 23 |
| abstract_inverted_index.regression | 81 |
| abstract_inverted_index.relatively | 62 |
| abstract_inverted_index.sufficient | 65 |
| abstract_inverted_index.application | 160 |
| abstract_inverted_index.information | 82 |
| abstract_inverted_index.methodology | 92 |
| abstract_inverted_index.performance | 147, 153 |
| abstract_inverted_index.variability | 17 |
| abstract_inverted_index.availability | 20 |
| abstract_inverted_index.development, | 115 |
| abstract_inverted_index.retrospective | 51 |
| abstract_inverted_index.dimensionality | 74, 103 |
| abstract_inverted_index.food-producing | 8 |
| abstract_inverted_index.implementation | 137 |
| abstract_inverted_index.Nadaraya-Watson | 129 |
| abstract_inverted_index.cross-validation. | 134 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile |