Using Large Language Models in Public Transit Systems, San Antonio as a case study Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.11003
The integration of large language models into public transit systems represents a significant advancement in urban transportation management and passenger experience. This study examines the impact of LLMs within San Antonio's public transit system, leveraging their capabilities in natural language processing, data analysis, and real time communication. By utilizing GTFS and other public transportation information, the research highlights the transformative potential of LLMs in enhancing route planning, reducing wait times, and providing personalized travel assistance. Our case study is the city of San Antonio as part of a project aiming to demonstrate how LLMs can optimize resource allocation, improve passenger satisfaction, and support decision making processes in transit management. We evaluated LLM responses to questions related to both information retrieval and also understanding. Ultimately, we believe that the adoption of LLMs in public transit systems can lead to more efficient, responsive, and user-friendly transportation networks, providing a model for other cities to follow.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.11003
- https://arxiv.org/pdf/2407.11003
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403753187
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403753187Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.11003Digital Object Identifier
- Title
-
Using Large Language Models in Public Transit Systems, San Antonio as a case studyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-25Full publication date if available
- Authors
-
Ramya Jonnala, Gongbo Liang, Jeong Yang, Izzat AlsmadiList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.11003Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.11003Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.11003Direct OA link when available
- Concepts
-
Public transport, Transit (satellite), Transit system, Computer science, Transport engineering, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403753187 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.11003 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.11003 |
| ids.openalex | https://openalex.org/W4403753187 |
| fwci | |
| type | preprint |
| title | Using Large Language Models in Public Transit Systems, San Antonio as a case study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11344 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9351999759674072 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2215 |
| topics[0].subfield.display_name | Building and Construction |
| topics[0].display_name | Traffic Prediction and Management Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C539828613 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5640628337860107 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q178512 |
| concepts[0].display_name | Public transport |
| concepts[1].id | https://openalex.org/C2778022998 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5463380217552185 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q651136 |
| concepts[1].display_name | Transit (satellite) |
| concepts[2].id | https://openalex.org/C2991774327 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5128450989723206 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q178512 |
| concepts[2].display_name | Transit system |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.3732466995716095 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C22212356 |
| concepts[4].level | 1 |
| concepts[4].score | 0.253701388835907 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q775325 |
| concepts[4].display_name | Transport engineering |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.21961885690689087 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/public-transport |
| keywords[0].score | 0.5640628337860107 |
| keywords[0].display_name | Public transport |
| keywords[1].id | https://openalex.org/keywords/transit |
| keywords[1].score | 0.5463380217552185 |
| keywords[1].display_name | Transit (satellite) |
| keywords[2].id | https://openalex.org/keywords/transit-system |
| keywords[2].score | 0.5128450989723206 |
| keywords[2].display_name | Transit system |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.3732466995716095 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/transport-engineering |
| keywords[4].score | 0.253701388835907 |
| keywords[4].display_name | Transport engineering |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.21961885690689087 |
| keywords[5].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.11003 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.11003 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.11003 |
| locations[1].id | doi:10.48550/arxiv.2407.11003 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.11003 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5114402724 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ramya Jonnala |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jonnala, Ramya |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070521525 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6700-6664 |
| authorships[1].author.display_name | Gongbo Liang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Liang, Gongbo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5005953559 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3819-3544 |
| authorships[2].author.display_name | Jeong Yang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yang, Jeong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5075965221 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7832-5081 |
| authorships[3].author.display_name | Izzat Alsmadi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Alsmadi, Izzat |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.11003 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Large Language Models in Public Transit Systems, San Antonio as a case study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11344 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9351999759674072 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2215 |
| primary_topic.subfield.display_name | Building and Construction |
| primary_topic.display_name | Traffic Prediction and Management Techniques |
| related_works | https://openalex.org/W3048859969, https://openalex.org/W3162329824, https://openalex.org/W4388420020, https://openalex.org/W4238517002, https://openalex.org/W2246807668, https://openalex.org/W2256558951, https://openalex.org/W1676979370, https://openalex.org/W594725858, https://openalex.org/W2052743154, https://openalex.org/W1989732792 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.11003 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.11003 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.11003 |
| primary_location.id | pmh:oai:arXiv.org:2407.11003 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.11003 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.11003 |
| publication_date | 2024-06-25 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 11, 87, 146 |
| abstract_inverted_index.By | 47 |
| abstract_inverted_index.We | 109 |
| abstract_inverted_index.as | 84 |
| abstract_inverted_index.in | 14, 37, 63, 106, 131 |
| abstract_inverted_index.is | 78 |
| abstract_inverted_index.of | 2, 26, 61, 81, 86, 129 |
| abstract_inverted_index.to | 90, 113, 116, 137, 151 |
| abstract_inverted_index.we | 124 |
| abstract_inverted_index.LLM | 111 |
| abstract_inverted_index.Our | 75 |
| abstract_inverted_index.San | 29, 82 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 18, 43, 50, 70, 101, 120, 141 |
| abstract_inverted_index.can | 94, 135 |
| abstract_inverted_index.for | 148 |
| abstract_inverted_index.how | 92 |
| abstract_inverted_index.the | 24, 55, 58, 79, 127 |
| abstract_inverted_index.GTFS | 49 |
| abstract_inverted_index.LLMs | 27, 62, 93, 130 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.both | 117 |
| abstract_inverted_index.case | 76 |
| abstract_inverted_index.city | 80 |
| abstract_inverted_index.data | 41 |
| abstract_inverted_index.into | 6 |
| abstract_inverted_index.lead | 136 |
| abstract_inverted_index.more | 138 |
| abstract_inverted_index.part | 85 |
| abstract_inverted_index.real | 44 |
| abstract_inverted_index.that | 126 |
| abstract_inverted_index.time | 45 |
| abstract_inverted_index.wait | 68 |
| abstract_inverted_index.large | 3 |
| abstract_inverted_index.model | 147 |
| abstract_inverted_index.other | 51, 149 |
| abstract_inverted_index.route | 65 |
| abstract_inverted_index.study | 22, 77 |
| abstract_inverted_index.their | 35 |
| abstract_inverted_index.urban | 15 |
| abstract_inverted_index.aiming | 89 |
| abstract_inverted_index.cities | 150 |
| abstract_inverted_index.impact | 25 |
| abstract_inverted_index.making | 104 |
| abstract_inverted_index.models | 5 |
| abstract_inverted_index.public | 7, 31, 52, 132 |
| abstract_inverted_index.times, | 69 |
| abstract_inverted_index.travel | 73 |
| abstract_inverted_index.within | 28 |
| abstract_inverted_index.Antonio | 83 |
| abstract_inverted_index.believe | 125 |
| abstract_inverted_index.follow. | 152 |
| abstract_inverted_index.improve | 98 |
| abstract_inverted_index.natural | 38 |
| abstract_inverted_index.project | 88 |
| abstract_inverted_index.related | 115 |
| abstract_inverted_index.support | 102 |
| abstract_inverted_index.system, | 33 |
| abstract_inverted_index.systems | 9, 134 |
| abstract_inverted_index.transit | 8, 32, 107, 133 |
| abstract_inverted_index.adoption | 128 |
| abstract_inverted_index.decision | 103 |
| abstract_inverted_index.examines | 23 |
| abstract_inverted_index.language | 4, 39 |
| abstract_inverted_index.optimize | 95 |
| abstract_inverted_index.reducing | 67 |
| abstract_inverted_index.research | 56 |
| abstract_inverted_index.resource | 96 |
| abstract_inverted_index.Antonio's | 30 |
| abstract_inverted_index.analysis, | 42 |
| abstract_inverted_index.enhancing | 64 |
| abstract_inverted_index.evaluated | 110 |
| abstract_inverted_index.networks, | 144 |
| abstract_inverted_index.passenger | 19, 99 |
| abstract_inverted_index.planning, | 66 |
| abstract_inverted_index.potential | 60 |
| abstract_inverted_index.processes | 105 |
| abstract_inverted_index.providing | 71, 145 |
| abstract_inverted_index.questions | 114 |
| abstract_inverted_index.responses | 112 |
| abstract_inverted_index.retrieval | 119 |
| abstract_inverted_index.utilizing | 48 |
| abstract_inverted_index.efficient, | 139 |
| abstract_inverted_index.highlights | 57 |
| abstract_inverted_index.leveraging | 34 |
| abstract_inverted_index.management | 17 |
| abstract_inverted_index.represents | 10 |
| abstract_inverted_index.Ultimately, | 123 |
| abstract_inverted_index.advancement | 13 |
| abstract_inverted_index.allocation, | 97 |
| abstract_inverted_index.assistance. | 74 |
| abstract_inverted_index.demonstrate | 91 |
| abstract_inverted_index.experience. | 20 |
| abstract_inverted_index.information | 118 |
| abstract_inverted_index.integration | 1 |
| abstract_inverted_index.management. | 108 |
| abstract_inverted_index.processing, | 40 |
| abstract_inverted_index.responsive, | 140 |
| abstract_inverted_index.significant | 12 |
| abstract_inverted_index.capabilities | 36 |
| abstract_inverted_index.information, | 54 |
| abstract_inverted_index.personalized | 72 |
| abstract_inverted_index.satisfaction, | 100 |
| abstract_inverted_index.user-friendly | 142 |
| abstract_inverted_index.communication. | 46 |
| abstract_inverted_index.transformative | 59 |
| abstract_inverted_index.transportation | 16, 53, 143 |
| abstract_inverted_index.understanding. | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |