Using Large Language Models to Generate Clinical Trial Tables and Figures Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.12046
Tables, figures, and listings (TFLs) are essential tools for summarizing clinical trial data. Creation of TFLs for reporting activities is often a time-consuming task encountered routinely during the execution of clinical trials. This study explored the use of large language models (LLMs) to automate the generation of TFLs through prompt engineering and few-shot transfer learning. Using public clinical trial data in ADaM format, our results demonstrated that LLMs can efficiently generate TFLs with prompt instructions, showcasing their potential in this domain. Furthermore, we developed a conservational agent named Clinical Trial TFL Generation Agent: An app that matches user queries to predefined prompts that produce customized programs to generate specific predefined TFLs.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.12046
- https://arxiv.org/pdf/2409.12046
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403746987
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403746987Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.12046Digital Object Identifier
- Title
-
Using Large Language Models to Generate Clinical Trial Tables and FiguresWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-18Full publication date if available
- Authors
-
Yumeng Yang, Peter Krusche, Kristyn Pantoja, Shi Cheng, Ethan B. Ludmir, Kirk Roberts, Guixiang ZhuList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.12046Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.12046Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.12046Direct OA link when available
- Concepts
-
Computer science, Natural language processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403746987 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.12046 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.12046 |
| ids.openalex | https://openalex.org/W4403746987 |
| fwci | |
| type | preprint |
| title | Using Large Language Models to Generate Clinical Trial Tables and Figures |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9397000074386597 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T11710 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9311000108718872 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Biomedical Text Mining and Ontologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.46605759859085083 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C204321447 |
| concepts[1].level | 1 |
| concepts[1].score | 0.40662840008735657 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[1].display_name | Natural language processing |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.46605759859085083 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/natural-language-processing |
| keywords[1].score | 0.40662840008735657 |
| keywords[1].display_name | Natural language processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.12046 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.12046 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.12046 |
| locations[1].id | doi:10.48550/arxiv.2409.12046 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.12046 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5065988875 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9076-0772 |
| authorships[0].author.display_name | Yumeng Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Yumeng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5034471501 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Peter Krusche |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Krusche, Peter |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5114400168 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kristyn Pantoja |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pantoja, Kristyn |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102906277 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6942-8481 |
| authorships[3].author.display_name | Shi Cheng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shi, Cheng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026186757 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5472-5344 |
| authorships[4].author.display_name | Ethan B. Ludmir |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ludmir, Ethan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5046709245 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6525-5213 |
| authorships[5].author.display_name | Kirk Roberts |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Roberts, Kirk |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5030239745 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3773-4097 |
| authorships[6].author.display_name | Guixiang Zhu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Zhu, Gen |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.12046 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Large Language Models to Generate Clinical Trial Tables and Figures |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9397000074386597 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.12046 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.12046 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.12046 |
| primary_location.id | pmh:oai:arXiv.org:2409.12046 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.12046 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.12046 |
| publication_date | 2024-09-18 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 21, 84 |
| abstract_inverted_index.An | 93 |
| abstract_inverted_index.in | 60, 78 |
| abstract_inverted_index.is | 19 |
| abstract_inverted_index.of | 14, 29, 37, 46 |
| abstract_inverted_index.to | 42, 99, 106 |
| abstract_inverted_index.we | 82 |
| abstract_inverted_index.TFL | 90 |
| abstract_inverted_index.and | 2, 51 |
| abstract_inverted_index.app | 94 |
| abstract_inverted_index.are | 5 |
| abstract_inverted_index.can | 68 |
| abstract_inverted_index.for | 8, 16 |
| abstract_inverted_index.our | 63 |
| abstract_inverted_index.the | 27, 35, 44 |
| abstract_inverted_index.use | 36 |
| abstract_inverted_index.ADaM | 61 |
| abstract_inverted_index.LLMs | 67 |
| abstract_inverted_index.TFLs | 15, 47, 71 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.data | 59 |
| abstract_inverted_index.task | 23 |
| abstract_inverted_index.that | 66, 95, 102 |
| abstract_inverted_index.this | 79 |
| abstract_inverted_index.user | 97 |
| abstract_inverted_index.with | 72 |
| abstract_inverted_index.TFLs. | 110 |
| abstract_inverted_index.Trial | 89 |
| abstract_inverted_index.Using | 55 |
| abstract_inverted_index.agent | 86 |
| abstract_inverted_index.data. | 12 |
| abstract_inverted_index.large | 38 |
| abstract_inverted_index.named | 87 |
| abstract_inverted_index.often | 20 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.their | 76 |
| abstract_inverted_index.tools | 7 |
| abstract_inverted_index.trial | 11, 58 |
| abstract_inverted_index.(LLMs) | 41 |
| abstract_inverted_index.(TFLs) | 4 |
| abstract_inverted_index.Agent: | 92 |
| abstract_inverted_index.during | 26 |
| abstract_inverted_index.models | 40 |
| abstract_inverted_index.prompt | 49, 73 |
| abstract_inverted_index.public | 56 |
| abstract_inverted_index.Tables, | 0 |
| abstract_inverted_index.domain. | 80 |
| abstract_inverted_index.format, | 62 |
| abstract_inverted_index.matches | 96 |
| abstract_inverted_index.produce | 103 |
| abstract_inverted_index.prompts | 101 |
| abstract_inverted_index.queries | 98 |
| abstract_inverted_index.results | 64 |
| abstract_inverted_index.through | 48 |
| abstract_inverted_index.trials. | 31 |
| abstract_inverted_index.Clinical | 88 |
| abstract_inverted_index.Creation | 13 |
| abstract_inverted_index.automate | 43 |
| abstract_inverted_index.clinical | 10, 30, 57 |
| abstract_inverted_index.explored | 34 |
| abstract_inverted_index.few-shot | 52 |
| abstract_inverted_index.figures, | 1 |
| abstract_inverted_index.generate | 70, 107 |
| abstract_inverted_index.language | 39 |
| abstract_inverted_index.listings | 3 |
| abstract_inverted_index.programs | 105 |
| abstract_inverted_index.specific | 108 |
| abstract_inverted_index.transfer | 53 |
| abstract_inverted_index.developed | 83 |
| abstract_inverted_index.essential | 6 |
| abstract_inverted_index.execution | 28 |
| abstract_inverted_index.learning. | 54 |
| abstract_inverted_index.potential | 77 |
| abstract_inverted_index.reporting | 17 |
| abstract_inverted_index.routinely | 25 |
| abstract_inverted_index.Generation | 91 |
| abstract_inverted_index.activities | 18 |
| abstract_inverted_index.customized | 104 |
| abstract_inverted_index.generation | 45 |
| abstract_inverted_index.predefined | 100, 109 |
| abstract_inverted_index.showcasing | 75 |
| abstract_inverted_index.efficiently | 69 |
| abstract_inverted_index.encountered | 24 |
| abstract_inverted_index.engineering | 50 |
| abstract_inverted_index.summarizing | 9 |
| abstract_inverted_index.Furthermore, | 81 |
| abstract_inverted_index.demonstrated | 65 |
| abstract_inverted_index.instructions, | 74 |
| abstract_inverted_index.conservational | 85 |
| abstract_inverted_index.time-consuming | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |