Using Machine Learning Techniques with Incomplete Polarity Datasets to Improve Earthquake Focal Mechanism Determination Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1785/0220220103
Earthquake focal mechanisms are traditionally produced using P-wave first-motion polarities and commonly require well-recorded seismicity. A recent approach that is less dependent on high signal-to-noise exploits similar waveforms to produce relative polarity measurements between earthquake pairs. Utilizing these relative polarity measurements, it is possible to produce composite focal mechanisms for clusters within microseismic sequences using regional networks. However, missing or low-confidence polarity measurements still limit our ability to calculate high-quality composite focal mechanisms. Here, we replaced unreliable polarity measurements with estimates using iterative random forests, an unsupervised ensemble machine learning method. Using the imputed (“replaced”) polarity data, we then categorically clustered the events into families. As a case study, we applied this modified composite mechanism workflow to a multistation template matched catalog of an earthquake swarm that occurred during 2020 near the Maacama fault in northern California. We found that our modified methodology produced higher-quality earthquake families and improved composite focal mechanisms, with fault-plane uncertainties <35° for 94% of the families compared with 34% of families using the previous methodology.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1785/0220220103
- OA Status
- hybrid
- Cited By
- 9
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297832152
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297832152Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1785/0220220103Digital Object Identifier
- Title
-
Using Machine Learning Techniques with Incomplete Polarity Datasets to Improve Earthquake Focal Mechanism DeterminationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-07Full publication date if available
- Authors
-
Robert J. Skoumal, D. R. Shelly, Jeanne L. HardebeckList of authors in order
- Landing page
-
https://doi.org/10.1785/0220220103Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1785/0220220103Direct OA link when available
- Concepts
-
Polarity (international relations), Focal mechanism, Seismology, Geology, Microseism, Swarm behaviour, Induced seismicity, Fault (geology), Computer science, Pattern recognition (psychology), Artificial intelligence, Chemistry, Biochemistry, CellTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297832152 |
|---|---|
| doi | https://doi.org/10.1785/0220220103 |
| ids.doi | https://doi.org/10.1785/0220220103 |
| ids.openalex | https://openalex.org/W4297832152 |
| fwci | 1.76218938 |
| type | article |
| title | Using Machine Learning Techniques with Incomplete Polarity Datasets to Improve Earthquake Focal Mechanism Determination |
| biblio.issue | 1 |
| biblio.volume | 94 |
| biblio.last_page | 304 |
| biblio.first_page | 294 |
| topics[0].id | https://openalex.org/T13018 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Seismology and Earthquake Studies |
| topics[1].id | https://openalex.org/T12424 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1908 |
| topics[1].subfield.display_name | Geophysics |
| topics[1].display_name | Earthquake Detection and Analysis |
| topics[2].id | https://openalex.org/T10110 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1908 |
| topics[2].subfield.display_name | Geophysics |
| topics[2].display_name | earthquake and tectonic studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777361361 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7645439505577087 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1112585 |
| concepts[0].display_name | Polarity (international relations) |
| concepts[1].id | https://openalex.org/C97490223 |
| concepts[1].level | 3 |
| concepts[1].score | 0.702723503112793 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1609712 |
| concepts[1].display_name | Focal mechanism |
| concepts[2].id | https://openalex.org/C165205528 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6141126751899719 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[2].display_name | Seismology |
| concepts[3].id | https://openalex.org/C127313418 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5615292191505432 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[3].display_name | Geology |
| concepts[4].id | https://openalex.org/C7266685 |
| concepts[4].level | 2 |
| concepts[4].score | 0.539923369884491 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1303250 |
| concepts[4].display_name | Microseism |
| concepts[5].id | https://openalex.org/C181335050 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4622374176979065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q14915018 |
| concepts[5].display_name | Swarm behaviour |
| concepts[6].id | https://openalex.org/C83176761 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4475840926170349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1394636 |
| concepts[6].display_name | Induced seismicity |
| concepts[7].id | https://openalex.org/C175551986 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42664000391960144 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[7].display_name | Fault (geology) |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3981749415397644 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.32892149686813354 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3134191632270813 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C185592680 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09014892578125 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[11].display_name | Chemistry |
| concepts[12].id | https://openalex.org/C55493867 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[12].display_name | Biochemistry |
| concepts[13].id | https://openalex.org/C1491633281 |
| concepts[13].level | 2 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7868 |
| concepts[13].display_name | Cell |
| keywords[0].id | https://openalex.org/keywords/polarity |
| keywords[0].score | 0.7645439505577087 |
| keywords[0].display_name | Polarity (international relations) |
| keywords[1].id | https://openalex.org/keywords/focal-mechanism |
| keywords[1].score | 0.702723503112793 |
| keywords[1].display_name | Focal mechanism |
| keywords[2].id | https://openalex.org/keywords/seismology |
| keywords[2].score | 0.6141126751899719 |
| keywords[2].display_name | Seismology |
| keywords[3].id | https://openalex.org/keywords/geology |
| keywords[3].score | 0.5615292191505432 |
| keywords[3].display_name | Geology |
| keywords[4].id | https://openalex.org/keywords/microseism |
| keywords[4].score | 0.539923369884491 |
| keywords[4].display_name | Microseism |
| keywords[5].id | https://openalex.org/keywords/swarm-behaviour |
| keywords[5].score | 0.4622374176979065 |
| keywords[5].display_name | Swarm behaviour |
| keywords[6].id | https://openalex.org/keywords/induced-seismicity |
| keywords[6].score | 0.4475840926170349 |
| keywords[6].display_name | Induced seismicity |
| keywords[7].id | https://openalex.org/keywords/fault |
| keywords[7].score | 0.42664000391960144 |
| keywords[7].display_name | Fault (geology) |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3981749415397644 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.32892149686813354 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3134191632270813 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/chemistry |
| keywords[11].score | 0.09014892578125 |
| keywords[11].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.1785/0220220103 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S183957208 |
| locations[0].source.issn | 0895-0695, 1938-2057 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0895-0695 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Seismological Research Letters |
| locations[0].source.host_organization | https://openalex.org/P4310316854 |
| locations[0].source.host_organization_name | Seismological Society of America |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316854 |
| locations[0].source.host_organization_lineage_names | Seismological Society of America |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Seismological Research Letters |
| locations[0].landing_page_url | https://doi.org/10.1785/0220220103 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5007742020 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5627-6239 |
| authorships[0].author.display_name | Robert J. Skoumal |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[0].affiliations[0].raw_affiliation_string | 1U.S. Geological Survey, Moffett Field, California, U.S.A. |
| authorships[0].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[0].institutions[0].ror | https://ror.org/035a68863 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | United States Geological Survey |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Robert J. Skoumal |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1U.S. Geological Survey, Moffett Field, California, U.S.A. |
| authorships[1].author.id | https://openalex.org/A5091909223 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2783-5158 |
| authorships[1].author.display_name | D. R. Shelly |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[1].affiliations[0].raw_affiliation_string | 2U.S. Geological Survey, Golden, Colorado, U.S.A. |
| authorships[1].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[1].institutions[0].ror | https://ror.org/035a68863 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | United States Geological Survey |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | David R. Shelly |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 2U.S. Geological Survey, Golden, Colorado, U.S.A. |
| authorships[2].author.id | https://openalex.org/A5025083953 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6737-7780 |
| authorships[2].author.display_name | Jeanne L. Hardebeck |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1286329397 |
| authorships[2].affiliations[0].raw_affiliation_string | 1U.S. Geological Survey, Moffett Field, California, U.S.A. |
| authorships[2].institutions[0].id | https://openalex.org/I1286329397 |
| authorships[2].institutions[0].ror | https://ror.org/035a68863 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1286329397, https://openalex.org/I1335927249 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | United States Geological Survey |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jeanne L. Hardebeck |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 1U.S. Geological Survey, Moffett Field, California, U.S.A. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1785/0220220103 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Machine Learning Techniques with Incomplete Polarity Datasets to Improve Earthquake Focal Mechanism Determination |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13018 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Seismology and Earthquake Studies |
| related_works | https://openalex.org/W4211018995, https://openalex.org/W2126967451, https://openalex.org/W2326651046, https://openalex.org/W4235678604, https://openalex.org/W2332561103, https://openalex.org/W2731855199, https://openalex.org/W4317436045, https://openalex.org/W1829947195, https://openalex.org/W2350013445, https://openalex.org/W2060111950 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1785/0220220103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S183957208 |
| best_oa_location.source.issn | 0895-0695, 1938-2057 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0895-0695 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Seismological Research Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310316854 |
| best_oa_location.source.host_organization_name | Seismological Society of America |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310316854 |
| best_oa_location.source.host_organization_lineage_names | Seismological Society of America |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Seismological Research Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1785/0220220103 |
| primary_location.id | doi:10.1785/0220220103 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S183957208 |
| primary_location.source.issn | 0895-0695, 1938-2057 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0895-0695 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Seismological Research Letters |
| primary_location.source.host_organization | https://openalex.org/P4310316854 |
| primary_location.source.host_organization_name | Seismological Society of America |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316854 |
| primary_location.source.host_organization_lineage_names | Seismological Society of America |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Seismological Research Letters |
| primary_location.landing_page_url | https://doi.org/10.1785/0220220103 |
| publication_date | 2022-09-07 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2911964244, https://openalex.org/W2102919512, https://openalex.org/W1849695929, https://openalex.org/W6770361782, https://openalex.org/W2165173881, https://openalex.org/W2167750495, https://openalex.org/W2149230623, https://openalex.org/W2124838897, https://openalex.org/W6678914141, https://openalex.org/W1480138173, https://openalex.org/W6978946756, https://openalex.org/W2008499385, https://openalex.org/W2045201564, https://openalex.org/W2798828763, https://openalex.org/W2131200073, https://openalex.org/W2932122405, https://openalex.org/W2555111840, https://openalex.org/W4293108251, https://openalex.org/W2064186732, https://openalex.org/W2099857446, https://openalex.org/W3102794316, https://openalex.org/W2127218421, https://openalex.org/W2989717941 |
| referenced_works_count | 23 |
| abstract_inverted_index.A | 16 |
| abstract_inverted_index.a | 107, 118 |
| abstract_inverted_index.As | 106 |
| abstract_inverted_index.We | 138 |
| abstract_inverted_index.an | 86, 124 |
| abstract_inverted_index.in | 135 |
| abstract_inverted_index.is | 20, 43 |
| abstract_inverted_index.it | 42 |
| abstract_inverted_index.of | 123, 159, 165 |
| abstract_inverted_index.on | 23 |
| abstract_inverted_index.or | 60 |
| abstract_inverted_index.to | 29, 45, 68, 117 |
| abstract_inverted_index.we | 75, 98, 110 |
| abstract_inverted_index.34% | 164 |
| abstract_inverted_index.94% | 158 |
| abstract_inverted_index.and | 11, 148 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 50, 157 |
| abstract_inverted_index.our | 66, 141 |
| abstract_inverted_index.the | 93, 102, 132, 160, 168 |
| abstract_inverted_index.2020 | 130 |
| abstract_inverted_index.case | 108 |
| abstract_inverted_index.high | 24 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.less | 21 |
| abstract_inverted_index.near | 131 |
| abstract_inverted_index.that | 19, 127, 140 |
| abstract_inverted_index.then | 99 |
| abstract_inverted_index.this | 112 |
| abstract_inverted_index.with | 80, 153, 163 |
| abstract_inverted_index.Here, | 74 |
| abstract_inverted_index.Using | 92 |
| abstract_inverted_index.data, | 97 |
| abstract_inverted_index.fault | 134 |
| abstract_inverted_index.focal | 2, 48, 72, 151 |
| abstract_inverted_index.found | 139 |
| abstract_inverted_index.limit | 65 |
| abstract_inverted_index.still | 64 |
| abstract_inverted_index.swarm | 126 |
| abstract_inverted_index.these | 38 |
| abstract_inverted_index.using | 7, 55, 82, 167 |
| abstract_inverted_index.P-wave | 8 |
| abstract_inverted_index.during | 129 |
| abstract_inverted_index.events | 103 |
| abstract_inverted_index.pairs. | 36 |
| abstract_inverted_index.random | 84 |
| abstract_inverted_index.recent | 17 |
| abstract_inverted_index.study, | 109 |
| abstract_inverted_index.within | 52 |
| abstract_inverted_index.Maacama | 133 |
| abstract_inverted_index.ability | 67 |
| abstract_inverted_index.applied | 111 |
| abstract_inverted_index.between | 34 |
| abstract_inverted_index.catalog | 122 |
| abstract_inverted_index.imputed | 94 |
| abstract_inverted_index.machine | 89 |
| abstract_inverted_index.matched | 121 |
| abstract_inverted_index.method. | 91 |
| abstract_inverted_index.missing | 59 |
| abstract_inverted_index.produce | 30, 46 |
| abstract_inverted_index.require | 13 |
| abstract_inverted_index.similar | 27 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 58 |
| abstract_inverted_index.approach | 18 |
| abstract_inverted_index.clusters | 51 |
| abstract_inverted_index.commonly | 12 |
| abstract_inverted_index.compared | 162 |
| abstract_inverted_index.ensemble | 88 |
| abstract_inverted_index.exploits | 26 |
| abstract_inverted_index.families | 147, 161, 166 |
| abstract_inverted_index.forests, | 85 |
| abstract_inverted_index.improved | 149 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.modified | 113, 142 |
| abstract_inverted_index.northern | 136 |
| abstract_inverted_index.occurred | 128 |
| abstract_inverted_index.polarity | 32, 40, 62, 78, 96 |
| abstract_inverted_index.possible | 44 |
| abstract_inverted_index.previous | 169 |
| abstract_inverted_index.produced | 6, 144 |
| abstract_inverted_index.regional | 56 |
| abstract_inverted_index.relative | 31, 39 |
| abstract_inverted_index.replaced | 76 |
| abstract_inverted_index.template | 120 |
| abstract_inverted_index.workflow | 116 |
| abstract_inverted_index.Utilizing | 37 |
| abstract_inverted_index.calculate | 69 |
| abstract_inverted_index.clustered | 101 |
| abstract_inverted_index.composite | 47, 71, 114, 150 |
| abstract_inverted_index.dependent | 22 |
| abstract_inverted_index.estimates | 81 |
| abstract_inverted_index.families. | 105 |
| abstract_inverted_index.iterative | 83 |
| abstract_inverted_index.mechanism | 115 |
| abstract_inverted_index.networks. | 57 |
| abstract_inverted_index.sequences | 54 |
| abstract_inverted_index.waveforms | 28 |
| abstract_inverted_index.Earthquake | 1 |
| abstract_inverted_index.earthquake | 35, 125, 146 |
| abstract_inverted_index.mechanisms | 3, 49 |
| abstract_inverted_index.polarities | 10 |
| abstract_inverted_index.unreliable | 77 |
| abstract_inverted_index.California. | 137 |
| abstract_inverted_index.fault-plane | 154 |
| abstract_inverted_index.mechanisms, | 152 |
| abstract_inverted_index.mechanisms. | 73 |
| abstract_inverted_index.methodology | 143 |
| abstract_inverted_index.seismicity. | 15 |
| abstract_inverted_index.&lt;35° | 156 |
| abstract_inverted_index.first-motion | 9 |
| abstract_inverted_index.high-quality | 70 |
| abstract_inverted_index.measurements | 33, 63, 79 |
| abstract_inverted_index.methodology. | 170 |
| abstract_inverted_index.microseismic | 53 |
| abstract_inverted_index.multistation | 119 |
| abstract_inverted_index.unsupervised | 87 |
| abstract_inverted_index.categorically | 100 |
| abstract_inverted_index.measurements, | 41 |
| abstract_inverted_index.traditionally | 5 |
| abstract_inverted_index.uncertainties | 155 |
| abstract_inverted_index.well-recorded | 14 |
| abstract_inverted_index.higher-quality | 145 |
| abstract_inverted_index.low-confidence | 61 |
| abstract_inverted_index.signal-to-noise | 25 |
| abstract_inverted_index.(“replaced”) | 95 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.83654983 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |