Using machine learning to inform harvest control rule design in complex fishery settings Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.12400
In fishery science, harvest management of size-structured stochastic populations is a long-standing and difficult problem. Rectilinear precautionary policies based on biomass and harvesting reference points have now become a standard approach to this problem. While these standard feedback policies are adapted from analytical or dynamic programming solutions assuming relatively simple ecological dynamics, they are often applied to more complicated ecological settings in the real world. In this paper we explore the problem of designing harvest control rules for partially observed, age-structured, spasmodic fish populations using tools from reinforcement learning (RL) and Bayesian optimization. Our focus is on the case of Walleye fisheries in Alberta, Canada, whose highly variable recruitment dynamics have perplexed managers and ecologists. We optimized and evaluated policies using several complementary performance metrics. The main questions we addressed were: 1. How do standard policies based on reference points perform relative to numerically optimized policies? 2. Can an observation of mean fish weight, in addition to stock biomass, aid policy decisions?
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.12400
- https://arxiv.org/pdf/2412.12400
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405561949
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405561949Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.12400Digital Object Identifier
- Title
-
Using machine learning to inform harvest control rule design in complex fishery settingsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-16Full publication date if available
- Authors
-
Felipe Montealegre‐Mora, Carl Boettiger, Carl J. Walters, Christopher L. CahillList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.12400Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.12400Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.12400Direct OA link when available
- Concepts
-
Control (management), Fishery, Computer science, Artificial intelligence, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405561949 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.12400 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.12400 |
| ids.openalex | https://openalex.org/W4405561949 |
| fwci | |
| type | preprint |
| title | Using machine learning to inform harvest control rule design in complex fishery settings |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10230 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.5968000292778015 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Marine and fisheries research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2775924081 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5917845368385315 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55608371 |
| concepts[0].display_name | Control (management) |
| concepts[1].id | https://openalex.org/C505870484 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5600190758705139 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q180538 |
| concepts[1].display_name | Fishery |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.43855059146881104 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3420800566673279 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.12015822529792786 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/control |
| keywords[0].score | 0.5917845368385315 |
| keywords[0].display_name | Control (management) |
| keywords[1].id | https://openalex.org/keywords/fishery |
| keywords[1].score | 0.5600190758705139 |
| keywords[1].display_name | Fishery |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.43855059146881104 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.3420800566673279 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.12015822529792786 |
| keywords[4].display_name | Biology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.12400 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.12400 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.12400 |
| locations[1].id | doi:10.48550/arxiv.2412.12400 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.12400 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5083981055 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1804-6985 |
| authorships[0].author.display_name | Felipe Montealegre‐Mora |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Montealegre-Mora, Felipe |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032226777 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1642-628X |
| authorships[1].author.display_name | Carl Boettiger |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Boettiger, Carl |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064392284 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7652-0964 |
| authorships[2].author.display_name | Carl J. Walters |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Walters, Carl J. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108773509 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Christopher L. Cahill |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Cahill, Christopher L. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.12400 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using machine learning to inform harvest control rule design in complex fishery settings |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10230 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.5968000292778015 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Marine and fisheries research |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.12400 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.12400 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.12400 |
| primary_location.id | pmh:oai:arXiv.org:2412.12400 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.12400 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.12400 |
| publication_date | 2024-12-16 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 10, 28 |
| abstract_inverted_index.1. | 131 |
| abstract_inverted_index.2. | 146 |
| abstract_inverted_index.In | 0, 65 |
| abstract_inverted_index.We | 115 |
| abstract_inverted_index.an | 148 |
| abstract_inverted_index.do | 133 |
| abstract_inverted_index.in | 61, 102, 154 |
| abstract_inverted_index.is | 9, 95 |
| abstract_inverted_index.of | 5, 72, 99, 150 |
| abstract_inverted_index.on | 19, 96, 137 |
| abstract_inverted_index.or | 43 |
| abstract_inverted_index.to | 31, 56, 142, 156 |
| abstract_inverted_index.we | 68, 128 |
| abstract_inverted_index.Can | 147 |
| abstract_inverted_index.How | 132 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.The | 125 |
| abstract_inverted_index.aid | 159 |
| abstract_inverted_index.and | 12, 21, 90, 113, 117 |
| abstract_inverted_index.are | 39, 53 |
| abstract_inverted_index.for | 77 |
| abstract_inverted_index.now | 26 |
| abstract_inverted_index.the | 62, 70, 97 |
| abstract_inverted_index.(RL) | 89 |
| abstract_inverted_index.case | 98 |
| abstract_inverted_index.fish | 82, 152 |
| abstract_inverted_index.from | 41, 86 |
| abstract_inverted_index.have | 25, 110 |
| abstract_inverted_index.main | 126 |
| abstract_inverted_index.mean | 151 |
| abstract_inverted_index.more | 57 |
| abstract_inverted_index.real | 63 |
| abstract_inverted_index.they | 52 |
| abstract_inverted_index.this | 32, 66 |
| abstract_inverted_index.While | 34 |
| abstract_inverted_index.based | 18, 136 |
| abstract_inverted_index.focus | 94 |
| abstract_inverted_index.often | 54 |
| abstract_inverted_index.paper | 67 |
| abstract_inverted_index.rules | 76 |
| abstract_inverted_index.stock | 157 |
| abstract_inverted_index.these | 35 |
| abstract_inverted_index.tools | 85 |
| abstract_inverted_index.using | 84, 120 |
| abstract_inverted_index.were: | 130 |
| abstract_inverted_index.whose | 105 |
| abstract_inverted_index.become | 27 |
| abstract_inverted_index.highly | 106 |
| abstract_inverted_index.points | 24, 139 |
| abstract_inverted_index.policy | 160 |
| abstract_inverted_index.simple | 49 |
| abstract_inverted_index.world. | 64 |
| abstract_inverted_index.Canada, | 104 |
| abstract_inverted_index.Walleye | 100 |
| abstract_inverted_index.adapted | 40 |
| abstract_inverted_index.applied | 55 |
| abstract_inverted_index.biomass | 20 |
| abstract_inverted_index.control | 75 |
| abstract_inverted_index.dynamic | 44 |
| abstract_inverted_index.explore | 69 |
| abstract_inverted_index.fishery | 1 |
| abstract_inverted_index.harvest | 3, 74 |
| abstract_inverted_index.perform | 140 |
| abstract_inverted_index.problem | 71 |
| abstract_inverted_index.several | 121 |
| abstract_inverted_index.weight, | 153 |
| abstract_inverted_index.Alberta, | 103 |
| abstract_inverted_index.Bayesian | 91 |
| abstract_inverted_index.addition | 155 |
| abstract_inverted_index.approach | 30 |
| abstract_inverted_index.assuming | 47 |
| abstract_inverted_index.biomass, | 158 |
| abstract_inverted_index.dynamics | 109 |
| abstract_inverted_index.feedback | 37 |
| abstract_inverted_index.learning | 88 |
| abstract_inverted_index.managers | 112 |
| abstract_inverted_index.metrics. | 124 |
| abstract_inverted_index.policies | 17, 38, 119, 135 |
| abstract_inverted_index.problem. | 14, 33 |
| abstract_inverted_index.relative | 141 |
| abstract_inverted_index.science, | 2 |
| abstract_inverted_index.settings | 60 |
| abstract_inverted_index.standard | 29, 36, 134 |
| abstract_inverted_index.variable | 107 |
| abstract_inverted_index.addressed | 129 |
| abstract_inverted_index.designing | 73 |
| abstract_inverted_index.difficult | 13 |
| abstract_inverted_index.dynamics, | 51 |
| abstract_inverted_index.evaluated | 118 |
| abstract_inverted_index.fisheries | 101 |
| abstract_inverted_index.observed, | 79 |
| abstract_inverted_index.optimized | 116, 144 |
| abstract_inverted_index.partially | 78 |
| abstract_inverted_index.perplexed | 111 |
| abstract_inverted_index.policies? | 145 |
| abstract_inverted_index.questions | 127 |
| abstract_inverted_index.reference | 23, 138 |
| abstract_inverted_index.solutions | 46 |
| abstract_inverted_index.spasmodic | 81 |
| abstract_inverted_index.analytical | 42 |
| abstract_inverted_index.decisions? | 161 |
| abstract_inverted_index.ecological | 50, 59 |
| abstract_inverted_index.harvesting | 22 |
| abstract_inverted_index.management | 4 |
| abstract_inverted_index.relatively | 48 |
| abstract_inverted_index.stochastic | 7 |
| abstract_inverted_index.Rectilinear | 15 |
| abstract_inverted_index.complicated | 58 |
| abstract_inverted_index.ecologists. | 114 |
| abstract_inverted_index.numerically | 143 |
| abstract_inverted_index.observation | 149 |
| abstract_inverted_index.performance | 123 |
| abstract_inverted_index.populations | 8, 83 |
| abstract_inverted_index.programming | 45 |
| abstract_inverted_index.recruitment | 108 |
| abstract_inverted_index.complementary | 122 |
| abstract_inverted_index.long-standing | 11 |
| abstract_inverted_index.optimization. | 92 |
| abstract_inverted_index.precautionary | 16 |
| abstract_inverted_index.reinforcement | 87 |
| abstract_inverted_index.age-structured, | 80 |
| abstract_inverted_index.size-structured | 6 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |