Using Multi-Source Nighttime Lights Data to Proxy for County-Level Economic Activity in China from 2012 to 2019 Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14051282
The use of nighttime lights (NTL) data to proxy for local economic activity is well established in remote sensing and other disciplines. Validation studies comparing NTL data with traditional economic indicators, such as Gross Domestic Product (GDP), underpin this usage in applied studies. Yet the most widely cited validation studies do not use the latest NTL data products, may not distinguish between time-series and cross-sectional uses of NTL data, and usually are for aggregated units, such as nation-states or the first sub-national level, yet applied studies increasingly focus on smaller and lower-level spatial units. To provide more updated and disaggregated validation results, this study examines relationships between GDP and NTL data for 2657 county-level units in China, observed each year from 2012 to 2019. The NTL data used were from three sources: the Defense Meteorological Satellite Program (DMSP), whose time series was recently extended to 2019; and two sets of Visible Infrared Imaging Radiometer Suite (VIIRS) data products. The first set of VIIRS products is the recently released version 2 (V.2 VNL) annual composites, and the second is the NASA Black Marble annual composites. Contrasts were made between cross-sectional predictions for GDP differences between areas and time-series predictions of economic activity changes over time, and also considered different levels of spatial aggregation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14051282
- https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189
- OA Status
- gold
- Cited By
- 43
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4220827237
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4220827237Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14051282Digital Object Identifier
- Title
-
Using Multi-Source Nighttime Lights Data to Proxy for County-Level Economic Activity in China from 2012 to 2019Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-05Full publication date if available
- Authors
-
Xiaoxuan Zhang, John GibsonList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14051282Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189Direct OA link when available
- Concepts
-
Proxy (statistics), Visible Infrared Imaging Radiometer Suite, Gross domestic product, Environmental science, Defense Meteorological Satellite Program, Meteorology, Climatology, China, Satellite, Geography, Remote sensing, Computer science, Geology, Economic growth, Machine learning, Economics, Aerospace engineering, Archaeology, EngineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
43Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 13, 2023: 17, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4220827237 |
|---|---|
| doi | https://doi.org/10.3390/rs14051282 |
| ids.doi | https://doi.org/10.3390/rs14051282 |
| ids.openalex | https://openalex.org/W4220827237 |
| fwci | 5.87606603 |
| type | article |
| title | Using Multi-Source Nighttime Lights Data to Proxy for County-Level Economic Activity in China from 2012 to 2019 |
| awards[0].id | https://openalex.org/G7862714704 |
| awards[0].funder_id | https://openalex.org/F4320320774 |
| awards[0].display_name | |
| awards[0].funder_award_id | MFP UOW-1901 |
| awards[0].funder_display_name | Royal Society Te Apārangi |
| biblio.issue | 5 |
| biblio.volume | 14 |
| biblio.last_page | 1282 |
| biblio.first_page | 1282 |
| topics[0].id | https://openalex.org/T11963 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Impact of Light on Environment and Health |
| topics[1].id | https://openalex.org/T10298 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.9768000245094299 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Urban Transport and Accessibility |
| topics[2].id | https://openalex.org/T13850 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9531999826431274 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3322 |
| topics[2].subfield.display_name | Urban Studies |
| topics[2].display_name | Night-time city culture |
| funders[0].id | https://openalex.org/F4320320774 |
| funders[0].ror | https://ror.org/04tajb587 |
| funders[0].display_name | Royal Society Te Apārangi |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C2780148112 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7485126256942749 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1432581 |
| concepts[0].display_name | Proxy (statistics) |
| concepts[1].id | https://openalex.org/C2777701342 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7246628999710083 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q16948273 |
| concepts[1].display_name | Visible Infrared Imaging Radiometer Suite |
| concepts[2].id | https://openalex.org/C114350782 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6372743844985962 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12638 |
| concepts[2].display_name | Gross domestic product |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6112127304077148 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C2778751583 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4957476556301117 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1182618 |
| concepts[4].display_name | Defense Meteorological Satellite Program |
| concepts[5].id | https://openalex.org/C153294291 |
| concepts[5].level | 1 |
| concepts[5].score | 0.47904956340789795 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[5].display_name | Meteorology |
| concepts[6].id | https://openalex.org/C49204034 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4694739580154419 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q52139 |
| concepts[6].display_name | Climatology |
| concepts[7].id | https://openalex.org/C191935318 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4462752938270569 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[7].display_name | China |
| concepts[8].id | https://openalex.org/C19269812 |
| concepts[8].level | 2 |
| concepts[8].score | 0.39137300848960876 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[8].display_name | Satellite |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3882460594177246 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C62649853 |
| concepts[10].level | 1 |
| concepts[10].score | 0.37613537907600403 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[10].display_name | Remote sensing |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3033013939857483 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09264340996742249 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C50522688 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[13].display_name | Economic growth |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C146978453 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[16].display_name | Aerospace engineering |
| concepts[17].id | https://openalex.org/C166957645 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[17].display_name | Archaeology |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| keywords[0].id | https://openalex.org/keywords/proxy |
| keywords[0].score | 0.7485126256942749 |
| keywords[0].display_name | Proxy (statistics) |
| keywords[1].id | https://openalex.org/keywords/visible-infrared-imaging-radiometer-suite |
| keywords[1].score | 0.7246628999710083 |
| keywords[1].display_name | Visible Infrared Imaging Radiometer Suite |
| keywords[2].id | https://openalex.org/keywords/gross-domestic-product |
| keywords[2].score | 0.6372743844985962 |
| keywords[2].display_name | Gross domestic product |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.6112127304077148 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/defense-meteorological-satellite-program |
| keywords[4].score | 0.4957476556301117 |
| keywords[4].display_name | Defense Meteorological Satellite Program |
| keywords[5].id | https://openalex.org/keywords/meteorology |
| keywords[5].score | 0.47904956340789795 |
| keywords[5].display_name | Meteorology |
| keywords[6].id | https://openalex.org/keywords/climatology |
| keywords[6].score | 0.4694739580154419 |
| keywords[6].display_name | Climatology |
| keywords[7].id | https://openalex.org/keywords/china |
| keywords[7].score | 0.4462752938270569 |
| keywords[7].display_name | China |
| keywords[8].id | https://openalex.org/keywords/satellite |
| keywords[8].score | 0.39137300848960876 |
| keywords[8].display_name | Satellite |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.3882460594177246 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/remote-sensing |
| keywords[10].score | 0.37613537907600403 |
| keywords[10].display_name | Remote sensing |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.3033013939857483 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.09264340996742249 |
| keywords[12].display_name | Geology |
| language | en |
| locations[0].id | doi:10.3390/rs14051282 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14051282 |
| locations[1].id | pmh:oai:doaj.org/article:c814deb97bab462baa82612776c80cc0 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 5, p 1282 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/c814deb97bab462baa82612776c80cc0 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/5/1282/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 5; Pages: 1282 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14051282 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5077322210 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2263-0284 |
| authorships[0].author.display_name | Xiaoxuan Zhang |
| authorships[0].countries | NZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I52179390 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Economics, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand |
| authorships[0].institutions[0].id | https://openalex.org/I52179390 |
| authorships[0].institutions[0].ror | https://ror.org/013fsnh78 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I52179390 |
| authorships[0].institutions[0].country_code | NZ |
| authorships[0].institutions[0].display_name | University of Waikato |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaoxuan Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Economics, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand |
| authorships[1].author.id | https://openalex.org/A5087650474 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3886-6873 |
| authorships[1].author.display_name | John Gibson |
| authorships[1].countries | NZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I52179390 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Economics, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand |
| authorships[1].institutions[0].id | https://openalex.org/I52179390 |
| authorships[1].institutions[0].ror | https://ror.org/013fsnh78 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I52179390 |
| authorships[1].institutions[0].country_code | NZ |
| authorships[1].institutions[0].display_name | University of Waikato |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | John Gibson |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Economics, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Multi-Source Nighttime Lights Data to Proxy for County-Level Economic Activity in China from 2012 to 2019 |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11963 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Impact of Light on Environment and Health |
| related_works | https://openalex.org/W2983489208, https://openalex.org/W2950710587, https://openalex.org/W2912121398, https://openalex.org/W2006948773, https://openalex.org/W3033973892, https://openalex.org/W2221419061, https://openalex.org/W1977568612, https://openalex.org/W3108880816, https://openalex.org/W4205800118, https://openalex.org/W2991729028 |
| cited_by_count | 43 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 17 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14051282 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14051282 |
| primary_location.id | doi:10.3390/rs14051282 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/5/1282/pdf?version=1646475189 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14051282 |
| publication_date | 2022-03-05 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1975642551, https://openalex.org/W2017708700, https://openalex.org/W6603811467, https://openalex.org/W2146585403, https://openalex.org/W3125786740, https://openalex.org/W2074119918, https://openalex.org/W2221419061, https://openalex.org/W2725871091, https://openalex.org/W2900693285, https://openalex.org/W3164815450, https://openalex.org/W3122538829, https://openalex.org/W2769370638, https://openalex.org/W6742795267, https://openalex.org/W2983518861, https://openalex.org/W4230973934, https://openalex.org/W3033380972, https://openalex.org/W2955733842, https://openalex.org/W2892489770, https://openalex.org/W3091583158, https://openalex.org/W6797924677, https://openalex.org/W3174450418, https://openalex.org/W2952266306, https://openalex.org/W4251662535, https://openalex.org/W2340679371, https://openalex.org/W3138029920, https://openalex.org/W3210043448, https://openalex.org/W2036707446, https://openalex.org/W6657196232, https://openalex.org/W2944320087, https://openalex.org/W3162664024, https://openalex.org/W6672873731, https://openalex.org/W3135054660, https://openalex.org/W2789245956, https://openalex.org/W3031400627, https://openalex.org/W2994833383, https://openalex.org/W4242581278, https://openalex.org/W1943376998, https://openalex.org/W2333214601, https://openalex.org/W2789438068, https://openalex.org/W2493672885, https://openalex.org/W2973807397, https://openalex.org/W3005528718, https://openalex.org/W4200618839, https://openalex.org/W2649137640, https://openalex.org/W2159669216, https://openalex.org/W1830719945, https://openalex.org/W2916637071, https://openalex.org/W3082220882, https://openalex.org/W2991729028, https://openalex.org/W2746187761, https://openalex.org/W3174724001, https://openalex.org/W2089134580, https://openalex.org/W93047142, https://openalex.org/W2025943354 |
| referenced_works_count | 54 |
| abstract_inverted_index.2 | 169 |
| abstract_inverted_index.To | 94 |
| abstract_inverted_index.as | 32, 76 |
| abstract_inverted_index.do | 50 |
| abstract_inverted_index.in | 16, 40, 115 |
| abstract_inverted_index.is | 13, 164, 177 |
| abstract_inverted_index.of | 2, 66, 149, 161, 198, 209 |
| abstract_inverted_index.on | 88 |
| abstract_inverted_index.or | 78 |
| abstract_inverted_index.to | 7, 122, 144 |
| abstract_inverted_index.GDP | 107, 191 |
| abstract_inverted_index.NTL | 25, 55, 67, 109, 125 |
| abstract_inverted_index.The | 0, 124, 158 |
| abstract_inverted_index.Yet | 43 |
| abstract_inverted_index.and | 19, 63, 69, 90, 98, 108, 146, 174, 195, 204 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.for | 9, 72, 111, 190 |
| abstract_inverted_index.may | 58 |
| abstract_inverted_index.not | 51, 59 |
| abstract_inverted_index.set | 160 |
| abstract_inverted_index.the | 44, 53, 79, 132, 165, 175, 178 |
| abstract_inverted_index.two | 147 |
| abstract_inverted_index.use | 1, 52 |
| abstract_inverted_index.was | 141 |
| abstract_inverted_index.yet | 83 |
| abstract_inverted_index.(V.2 | 170 |
| abstract_inverted_index.2012 | 121 |
| abstract_inverted_index.2657 | 112 |
| abstract_inverted_index.NASA | 179 |
| abstract_inverted_index.VNL) | 171 |
| abstract_inverted_index.also | 205 |
| abstract_inverted_index.data | 6, 26, 56, 110, 126, 156 |
| abstract_inverted_index.each | 118 |
| abstract_inverted_index.from | 120, 129 |
| abstract_inverted_index.made | 186 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.most | 45 |
| abstract_inverted_index.over | 202 |
| abstract_inverted_index.sets | 148 |
| abstract_inverted_index.such | 31, 75 |
| abstract_inverted_index.this | 38, 102 |
| abstract_inverted_index.time | 139 |
| abstract_inverted_index.used | 127 |
| abstract_inverted_index.uses | 65 |
| abstract_inverted_index.well | 14 |
| abstract_inverted_index.were | 128, 185 |
| abstract_inverted_index.with | 27 |
| abstract_inverted_index.year | 119 |
| abstract_inverted_index.(NTL) | 5 |
| abstract_inverted_index.2019. | 123 |
| abstract_inverted_index.2019; | 145 |
| abstract_inverted_index.Black | 180 |
| abstract_inverted_index.Gross | 33 |
| abstract_inverted_index.Suite | 154 |
| abstract_inverted_index.VIIRS | 162 |
| abstract_inverted_index.areas | 194 |
| abstract_inverted_index.cited | 47 |
| abstract_inverted_index.data, | 68 |
| abstract_inverted_index.first | 80, 159 |
| abstract_inverted_index.focus | 87 |
| abstract_inverted_index.local | 10 |
| abstract_inverted_index.other | 20 |
| abstract_inverted_index.proxy | 8 |
| abstract_inverted_index.study | 103 |
| abstract_inverted_index.three | 130 |
| abstract_inverted_index.time, | 203 |
| abstract_inverted_index.units | 114 |
| abstract_inverted_index.usage | 39 |
| abstract_inverted_index.whose | 138 |
| abstract_inverted_index.(GDP), | 36 |
| abstract_inverted_index.China, | 116 |
| abstract_inverted_index.Marble | 181 |
| abstract_inverted_index.annual | 172, 182 |
| abstract_inverted_index.latest | 54 |
| abstract_inverted_index.level, | 82 |
| abstract_inverted_index.levels | 208 |
| abstract_inverted_index.lights | 4 |
| abstract_inverted_index.remote | 17 |
| abstract_inverted_index.second | 176 |
| abstract_inverted_index.series | 140 |
| abstract_inverted_index.units, | 74 |
| abstract_inverted_index.units. | 93 |
| abstract_inverted_index.widely | 46 |
| abstract_inverted_index.(DMSP), | 137 |
| abstract_inverted_index.(VIIRS) | 155 |
| abstract_inverted_index.Defense | 133 |
| abstract_inverted_index.Imaging | 152 |
| abstract_inverted_index.Product | 35 |
| abstract_inverted_index.Program | 136 |
| abstract_inverted_index.Visible | 150 |
| abstract_inverted_index.applied | 41, 84 |
| abstract_inverted_index.between | 61, 106, 187, 193 |
| abstract_inverted_index.changes | 201 |
| abstract_inverted_index.provide | 95 |
| abstract_inverted_index.sensing | 18 |
| abstract_inverted_index.smaller | 89 |
| abstract_inverted_index.spatial | 92, 210 |
| abstract_inverted_index.studies | 23, 49, 85 |
| abstract_inverted_index.updated | 97 |
| abstract_inverted_index.usually | 70 |
| abstract_inverted_index.version | 168 |
| abstract_inverted_index.Domestic | 34 |
| abstract_inverted_index.Infrared | 151 |
| abstract_inverted_index.activity | 12, 200 |
| abstract_inverted_index.economic | 11, 29, 199 |
| abstract_inverted_index.examines | 104 |
| abstract_inverted_index.extended | 143 |
| abstract_inverted_index.observed | 117 |
| abstract_inverted_index.products | 163 |
| abstract_inverted_index.recently | 142, 166 |
| abstract_inverted_index.released | 167 |
| abstract_inverted_index.results, | 101 |
| abstract_inverted_index.sources: | 131 |
| abstract_inverted_index.studies. | 42 |
| abstract_inverted_index.underpin | 37 |
| abstract_inverted_index.Contrasts | 184 |
| abstract_inverted_index.Satellite | 135 |
| abstract_inverted_index.comparing | 24 |
| abstract_inverted_index.different | 207 |
| abstract_inverted_index.nighttime | 3 |
| abstract_inverted_index.products, | 57 |
| abstract_inverted_index.products. | 157 |
| abstract_inverted_index.Radiometer | 153 |
| abstract_inverted_index.Validation | 22 |
| abstract_inverted_index.aggregated | 73 |
| abstract_inverted_index.considered | 206 |
| abstract_inverted_index.validation | 48, 100 |
| abstract_inverted_index.composites, | 173 |
| abstract_inverted_index.composites. | 183 |
| abstract_inverted_index.differences | 192 |
| abstract_inverted_index.distinguish | 60 |
| abstract_inverted_index.established | 15 |
| abstract_inverted_index.indicators, | 30 |
| abstract_inverted_index.lower-level | 91 |
| abstract_inverted_index.predictions | 189, 197 |
| abstract_inverted_index.time-series | 62, 196 |
| abstract_inverted_index.traditional | 28 |
| abstract_inverted_index.aggregation. | 211 |
| abstract_inverted_index.county-level | 113 |
| abstract_inverted_index.disciplines. | 21 |
| abstract_inverted_index.increasingly | 86 |
| abstract_inverted_index.sub-national | 81 |
| abstract_inverted_index.disaggregated | 99 |
| abstract_inverted_index.nation-states | 77 |
| abstract_inverted_index.relationships | 105 |
| abstract_inverted_index.Meteorological | 134 |
| abstract_inverted_index.cross-sectional | 64, 188 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5087650474 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I52179390 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.96309834 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |