Using Non-Lipschitz Signum-Based Functions for Distributed Optimization and Machine Learning: Trade-Off Between Convergence Rate and Optimality Gap Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/mca30050108
In recent years, the prevalence of large-scale datasets and the demand for sophisticated learning models have necessitated the development of efficient distributed machine learning (ML) solutions. Convergence speed is a critical factor influencing the practicality and effectiveness of these distributed frameworks. Recently, non-Lipschitz continuous optimization algorithms have been proposed to improve the slow convergence rate of the existing linear solutions. The use of signum-based functions was previously considered in consensus and control literature to reach fast convergence in the prescribed time and also to provide robust algorithms to noisy/outlier data. However, as shown in this work, these algorithms lead to an optimality gap and steady-state residual of the objective function in discrete-time setup. This motivates us to investigate the distributed optimization and ML algorithms in terms of trade-off between convergence rate and optimality gap. In this direction, we specifically consider the distributed regression problem and check its convergence rate by applying both linear and non-Lipschitz signum-based functions. We check our distributed regression approach by extensive simulations. Our results show that although adopting signum-based functions may give faster convergence, it results in large optimality gaps. The findings presented in this paper may contribute to and advance the ongoing discourse of similar distributed algorithms, e.g., for distributed constrained optimization and distributed estimation.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/mca30050108
- https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286
- OA Status
- gold
- OpenAlex ID
- https://openalex.org/W4414866580
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414866580Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/mca30050108Digital Object Identifier
- Title
-
Using Non-Lipschitz Signum-Based Functions for Distributed Optimization and Machine Learning: Trade-Off Between Convergence Rate and Optimality GapWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-04Full publication date if available
- Authors
-
Mohammadreza Doostmohammadian, Amir Ahmad Ghods, Alireza Aghasi, Z. R. Gabidullina, Hamid R. RabieeList of authors in order
- Landing page
-
https://doi.org/10.3390/mca30050108Publisher landing page
- PDF URL
-
https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414866580 |
|---|---|
| doi | https://doi.org/10.3390/mca30050108 |
| ids.doi | https://doi.org/10.3390/mca30050108 |
| ids.openalex | https://openalex.org/W4414866580 |
| fwci | 0.0 |
| type | article |
| title | Using Non-Lipschitz Signum-Based Functions for Distributed Optimization and Machine Learning: Trade-Off Between Convergence Rate and Optimality Gap |
| biblio.issue | 5 |
| biblio.volume | 30 |
| biblio.last_page | 108 |
| biblio.first_page | 108 |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8873000144958496 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T11975 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.828499972820282 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Evolutionary Algorithms and Applications |
| topics[2].id | https://openalex.org/T11612 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8194000124931335 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Stochastic Gradient Optimization Techniques |
| is_xpac | False |
| apc_list.value | 1400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1515 |
| apc_paid.value | 1400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1515 |
| language | en |
| locations[0].id | doi:10.3390/mca30050108 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201516 |
| locations[0].source.issn | 1300-686X, 2297-8747 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1300-686X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Mathematical and Computational Applications |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematical and Computational Applications |
| locations[0].landing_page_url | https://doi.org/10.3390/mca30050108 |
| locations[1].id | pmh:oai:doaj.org/article:2c134bb067044789aeba003dae9863a8 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Mathematical and Computational Applications, Vol 30, Iss 5, p 108 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/2c134bb067044789aeba003dae9863a8 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5085550621 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0959-6608 |
| authorships[0].author.display_name | Mohammadreza Doostmohammadian |
| authorships[0].countries | IR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I928334797 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran |
| authorships[0].institutions[0].id | https://openalex.org/I928334797 |
| authorships[0].institutions[0].ror | https://ror.org/029gksw03 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I928334797 |
| authorships[0].institutions[0].country_code | IR |
| authorships[0].institutions[0].display_name | Semnan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mohammadreza Doostmohammadian |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran |
| authorships[1].author.id | https://openalex.org/A5115004476 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-0360-4857 |
| authorships[1].author.display_name | Amir Ahmad Ghods |
| authorships[1].countries | IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I928334797 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I928334797 |
| authorships[1].institutions[0].ror | https://ror.org/029gksw03 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I928334797 |
| authorships[1].institutions[0].country_code | IR |
| authorships[1].institutions[0].display_name | Semnan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Amir Ahmad Ghods |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Mechanical Engineering, Semnan University, Semnan 35131-19111, Iran |
| authorships[2].author.id | https://openalex.org/A5060271129 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9534-2024 |
| authorships[2].author.display_name | Alireza Aghasi |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I131249849 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA |
| authorships[2].institutions[0].id | https://openalex.org/I131249849 |
| authorships[2].institutions[0].ror | https://ror.org/00ysfqy60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I131249849 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Oregon State University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Alireza Aghasi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331, USA |
| authorships[3].author.id | https://openalex.org/A5049973137 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3573-3979 |
| authorships[3].author.display_name | Z. R. Gabidullina |
| authorships[3].countries | RU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kazan 420008, Russia |
| authorships[3].institutions[0].id | https://openalex.org/I21203515 |
| authorships[3].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[3].institutions[0].country_code | RU |
| authorships[3].institutions[0].display_name | Kazan Federal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zulfiya R. Gabidullina |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Computational Mathematics and Information Technologies, Kazan Federal University, Kazan 420008, Russia |
| authorships[4].author.id | https://openalex.org/A5063512925 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9835-4493 |
| authorships[4].author.display_name | Hamid R. Rabiee |
| authorships[4].countries | IR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I133529467 |
| authorships[4].affiliations[0].raw_affiliation_string | Computer Engineering Department, Sharif University of Technology, Tehran 15119-43943, Iran |
| authorships[4].institutions[0].id | https://openalex.org/I133529467 |
| authorships[4].institutions[0].ror | https://ror.org/024c2fq17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I133529467 |
| authorships[4].institutions[0].country_code | IR |
| authorships[4].institutions[0].display_name | Sharif University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hamid R. Rabiee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Computer Engineering Department, Sharif University of Technology, Tehran 15119-43943, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Non-Lipschitz Signum-Based Functions for Distributed Optimization and Machine Learning: Trade-Off Between Convergence Rate and Optimality Gap |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8873000144958496 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/mca30050108 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201516 |
| best_oa_location.source.issn | 1300-686X, 2297-8747 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1300-686X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Mathematical and Computational Applications |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematical and Computational Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3390/mca30050108 |
| primary_location.id | doi:10.3390/mca30050108 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201516 |
| primary_location.source.issn | 1300-686X, 2297-8747 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1300-686X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Mathematical and Computational Applications |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2297-8747/30/5/108/pdf?version=1759564286 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematical and Computational Applications |
| primary_location.landing_page_url | https://doi.org/10.3390/mca30050108 |
| publication_date | 2025-10-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 29 |
| abstract_inverted_index.In | 0, 134 |
| abstract_inverted_index.ML | 122 |
| abstract_inverted_index.We | 157 |
| abstract_inverted_index.an | 100 |
| abstract_inverted_index.as | 91 |
| abstract_inverted_index.by | 149, 163 |
| abstract_inverted_index.in | 68, 77, 93, 110, 124, 180, 187 |
| abstract_inverted_index.is | 28 |
| abstract_inverted_index.it | 178 |
| abstract_inverted_index.of | 5, 19, 37, 55, 62, 106, 126, 198 |
| abstract_inverted_index.to | 49, 73, 83, 87, 99, 116, 192 |
| abstract_inverted_index.us | 115 |
| abstract_inverted_index.we | 137 |
| abstract_inverted_index.Our | 166 |
| abstract_inverted_index.The | 60, 184 |
| abstract_inverted_index.and | 8, 35, 70, 81, 103, 121, 131, 144, 153, 193, 207 |
| abstract_inverted_index.for | 11, 203 |
| abstract_inverted_index.gap | 102 |
| abstract_inverted_index.its | 146 |
| abstract_inverted_index.may | 174, 190 |
| abstract_inverted_index.our | 159 |
| abstract_inverted_index.the | 3, 9, 17, 33, 51, 56, 78, 107, 118, 140, 195 |
| abstract_inverted_index.use | 61 |
| abstract_inverted_index.was | 65 |
| abstract_inverted_index.(ML) | 24 |
| abstract_inverted_index.This | 113 |
| abstract_inverted_index.also | 82 |
| abstract_inverted_index.been | 47 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.fast | 75 |
| abstract_inverted_index.gap. | 133 |
| abstract_inverted_index.give | 175 |
| abstract_inverted_index.have | 15, 46 |
| abstract_inverted_index.lead | 98 |
| abstract_inverted_index.rate | 54, 130, 148 |
| abstract_inverted_index.show | 168 |
| abstract_inverted_index.slow | 52 |
| abstract_inverted_index.that | 169 |
| abstract_inverted_index.this | 94, 135, 188 |
| abstract_inverted_index.time | 80 |
| abstract_inverted_index.check | 145, 158 |
| abstract_inverted_index.data. | 89 |
| abstract_inverted_index.e.g., | 202 |
| abstract_inverted_index.gaps. | 183 |
| abstract_inverted_index.large | 181 |
| abstract_inverted_index.paper | 189 |
| abstract_inverted_index.reach | 74 |
| abstract_inverted_index.shown | 92 |
| abstract_inverted_index.speed | 27 |
| abstract_inverted_index.terms | 125 |
| abstract_inverted_index.these | 38, 96 |
| abstract_inverted_index.work, | 95 |
| abstract_inverted_index.demand | 10 |
| abstract_inverted_index.factor | 31 |
| abstract_inverted_index.faster | 176 |
| abstract_inverted_index.linear | 58, 152 |
| abstract_inverted_index.models | 14 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.robust | 85 |
| abstract_inverted_index.setup. | 112 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.advance | 194 |
| abstract_inverted_index.between | 128 |
| abstract_inverted_index.control | 71 |
| abstract_inverted_index.improve | 50 |
| abstract_inverted_index.machine | 22 |
| abstract_inverted_index.ongoing | 196 |
| abstract_inverted_index.problem | 143 |
| abstract_inverted_index.provide | 84 |
| abstract_inverted_index.results | 167, 179 |
| abstract_inverted_index.similar | 199 |
| abstract_inverted_index.However, | 90 |
| abstract_inverted_index.adopting | 171 |
| abstract_inverted_index.although | 170 |
| abstract_inverted_index.applying | 150 |
| abstract_inverted_index.approach | 162 |
| abstract_inverted_index.consider | 139 |
| abstract_inverted_index.critical | 30 |
| abstract_inverted_index.datasets | 7 |
| abstract_inverted_index.existing | 57 |
| abstract_inverted_index.findings | 185 |
| abstract_inverted_index.function | 109 |
| abstract_inverted_index.learning | 13, 23 |
| abstract_inverted_index.proposed | 48 |
| abstract_inverted_index.residual | 105 |
| abstract_inverted_index.Recently, | 41 |
| abstract_inverted_index.consensus | 69 |
| abstract_inverted_index.discourse | 197 |
| abstract_inverted_index.efficient | 20 |
| abstract_inverted_index.extensive | 164 |
| abstract_inverted_index.functions | 64, 173 |
| abstract_inverted_index.motivates | 114 |
| abstract_inverted_index.objective | 108 |
| abstract_inverted_index.presented | 186 |
| abstract_inverted_index.trade-off | 127 |
| abstract_inverted_index.algorithms | 45, 86, 97, 123 |
| abstract_inverted_index.considered | 67 |
| abstract_inverted_index.continuous | 43 |
| abstract_inverted_index.contribute | 191 |
| abstract_inverted_index.direction, | 136 |
| abstract_inverted_index.functions. | 156 |
| abstract_inverted_index.literature | 72 |
| abstract_inverted_index.optimality | 101, 132, 182 |
| abstract_inverted_index.prescribed | 79 |
| abstract_inverted_index.prevalence | 4 |
| abstract_inverted_index.previously | 66 |
| abstract_inverted_index.regression | 142, 161 |
| abstract_inverted_index.solutions. | 25, 59 |
| abstract_inverted_index.Convergence | 26 |
| abstract_inverted_index.algorithms, | 201 |
| abstract_inverted_index.constrained | 205 |
| abstract_inverted_index.convergence | 53, 76, 129, 147 |
| abstract_inverted_index.development | 18 |
| abstract_inverted_index.distributed | 21, 39, 119, 141, 160, 200, 204, 208 |
| abstract_inverted_index.estimation. | 209 |
| abstract_inverted_index.frameworks. | 40 |
| abstract_inverted_index.influencing | 32 |
| abstract_inverted_index.investigate | 117 |
| abstract_inverted_index.large-scale | 6 |
| abstract_inverted_index.convergence, | 177 |
| abstract_inverted_index.necessitated | 16 |
| abstract_inverted_index.optimization | 44, 120, 206 |
| abstract_inverted_index.practicality | 34 |
| abstract_inverted_index.signum-based | 63, 155, 172 |
| abstract_inverted_index.simulations. | 165 |
| abstract_inverted_index.specifically | 138 |
| abstract_inverted_index.steady-state | 104 |
| abstract_inverted_index.discrete-time | 111 |
| abstract_inverted_index.effectiveness | 36 |
| abstract_inverted_index.noisy/outlier | 88 |
| abstract_inverted_index.non-Lipschitz | 42, 154 |
| abstract_inverted_index.sophisticated | 12 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5085550621 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I928334797 |
| citation_normalized_percentile.value | 0.21143765 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |