Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale Datasets Article Swipe
Esma Balkır
,
Masha Naslidnyk
,
Dave Palfrey
,
Arpit Mittal
·
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/d19-1368
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.18653/v1/d19-1368
Esma Balkir, Masha Naslidnyk, Dave Palfrey, Arpit Mittal. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019.
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18653/v1/d19-1368
- https://www.aclweb.org/anthology/D19-1368.pdf
- OA Status
- gold
- Cited By
- 4
- References
- 26
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2971229319
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2971229319Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18653/v1/d19-1368Digital Object Identifier
- Title
-
Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale DatasetsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Esma Balkır, Masha Naslidnyk, Dave Palfrey, Arpit MittalList of authors in order
- Landing page
-
https://doi.org/10.18653/v1/d19-1368Publisher landing page
- PDF URL
-
https://www.aclweb.org/anthology/D19-1368.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.aclweb.org/anthology/D19-1368.pdfDirect OA link when available
- Concepts
-
Computer science, Pairwise comparison, Knowledge graph, Graph, Scale (ratio), Joint (building), Natural language, Artificial intelligence, Natural language processing, Theoretical computer science, Engineering, Geography, Architectural engineering, CartographyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
26Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2971229319 |
|---|---|
| doi | https://doi.org/10.18653/v1/d19-1368 |
| ids.doi | https://doi.org/10.18653/v1/d19-1368 |
| ids.mag | 2971229319 |
| ids.openalex | https://openalex.org/W2971229319 |
| fwci | 0.30723549 |
| type | article |
| title | Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale Datasets |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 3594 |
| biblio.first_page | 3589 |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9995999932289124 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T11714 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9919000267982483 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Multimodal Machine Learning Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7531492710113525 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C184898388 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7494992613792419 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[1].display_name | Pairwise comparison |
| concepts[2].id | https://openalex.org/C2987255567 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7394110560417175 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q33002955 |
| concepts[2].display_name | Knowledge graph |
| concepts[3].id | https://openalex.org/C132525143 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49683383107185364 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[3].display_name | Graph |
| concepts[4].id | https://openalex.org/C2778755073 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4931175410747528 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10858537 |
| concepts[4].display_name | Scale (ratio) |
| concepts[5].id | https://openalex.org/C18555067 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4160429835319519 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8375051 |
| concepts[5].display_name | Joint (building) |
| concepts[6].id | https://openalex.org/C195324797 |
| concepts[6].level | 2 |
| concepts[6].score | 0.412738174200058 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[6].display_name | Natural language |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38544514775276184 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34882450103759766 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C80444323 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34319037199020386 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[9].display_name | Theoretical computer science |
| concepts[10].id | https://openalex.org/C127413603 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07833057641983032 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[10].display_name | Engineering |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0650624930858612 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C170154142 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q150737 |
| concepts[12].display_name | Architectural engineering |
| concepts[13].id | https://openalex.org/C58640448 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[13].display_name | Cartography |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7531492710113525 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[1].score | 0.7494992613792419 |
| keywords[1].display_name | Pairwise comparison |
| keywords[2].id | https://openalex.org/keywords/knowledge-graph |
| keywords[2].score | 0.7394110560417175 |
| keywords[2].display_name | Knowledge graph |
| keywords[3].id | https://openalex.org/keywords/graph |
| keywords[3].score | 0.49683383107185364 |
| keywords[3].display_name | Graph |
| keywords[4].id | https://openalex.org/keywords/scale |
| keywords[4].score | 0.4931175410747528 |
| keywords[4].display_name | Scale (ratio) |
| keywords[5].id | https://openalex.org/keywords/joint |
| keywords[5].score | 0.4160429835319519 |
| keywords[5].display_name | Joint (building) |
| keywords[6].id | https://openalex.org/keywords/natural-language |
| keywords[6].score | 0.412738174200058 |
| keywords[6].display_name | Natural language |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38544514775276184 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.34882450103759766 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[9].score | 0.34319037199020386 |
| keywords[9].display_name | Theoretical computer science |
| keywords[10].id | https://openalex.org/keywords/engineering |
| keywords[10].score | 0.07833057641983032 |
| keywords[10].display_name | Engineering |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.0650624930858612 |
| keywords[11].display_name | Geography |
| language | en |
| locations[0].id | doi:10.18653/v1/d19-1368 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.aclweb.org/anthology/D19-1368.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| locations[0].landing_page_url | https://doi.org/10.18653/v1/d19-1368 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5034130220 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Esma Balkır |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210123934 |
| authorships[0].affiliations[0].raw_affiliation_string | Amazon Research, Cambridge, UK |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I98677209 |
| authorships[0].affiliations[1].raw_affiliation_string | University of Edinburgh, Scotland, UK |
| authorships[0].institutions[0].id | https://openalex.org/I4210123934 |
| authorships[0].institutions[0].ror | https://ror.org/02xey9634 |
| authorships[0].institutions[0].type | company |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210123934 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Amazon (United Kingdom) |
| authorships[0].institutions[1].id | https://openalex.org/I98677209 |
| authorships[0].institutions[1].ror | https://ror.org/01nrxwf90 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I98677209 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | University of Edinburgh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Esma Balkir |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Amazon Research, Cambridge, UK, University of Edinburgh, Scotland, UK |
| authorships[1].author.id | https://openalex.org/A5060068060 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9103-2013 |
| authorships[1].author.display_name | Masha Naslidnyk |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210123934 |
| authorships[1].affiliations[0].raw_affiliation_string | Amazon Research, Cambridge, UK |
| authorships[1].institutions[0].id | https://openalex.org/I4210123934 |
| authorships[1].institutions[0].ror | https://ror.org/02xey9634 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210123934 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Amazon (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Masha Naslidnyk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Amazon Research, Cambridge, UK |
| authorships[2].author.id | https://openalex.org/A5037520895 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Dave Palfrey |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210123934 |
| authorships[2].affiliations[0].raw_affiliation_string | Amazon Research, Cambridge, UK |
| authorships[2].institutions[0].id | https://openalex.org/I4210123934 |
| authorships[2].institutions[0].ror | https://ror.org/02xey9634 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210123934 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Amazon (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dave Palfrey |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amazon Research, Cambridge, UK |
| authorships[3].author.id | https://openalex.org/A5017772135 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Arpit Mittal |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210123934 |
| authorships[3].affiliations[0].raw_affiliation_string | Amazon Research, Cambridge, UK |
| authorships[3].institutions[0].id | https://openalex.org/I4210123934 |
| authorships[3].institutions[0].ror | https://ror.org/02xey9634 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210123934 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | Amazon (United Kingdom) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Arpit Mittal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Amazon Research, Cambridge, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.aclweb.org/anthology/D19-1368.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Pairwise Occurrence Information to Improve Knowledge Graph Completion on Large-Scale Datasets |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| related_works | https://openalex.org/W2487162673, https://openalex.org/W2793211469, https://openalex.org/W2949152769, https://openalex.org/W4372354731, https://openalex.org/W2942366970, https://openalex.org/W2807634898, https://openalex.org/W1692008701, https://openalex.org/W2597588799, https://openalex.org/W4360593462, https://openalex.org/W2562400057 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18653/v1/d19-1368 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.aclweb.org/anthology/D19-1368.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| best_oa_location.landing_page_url | https://doi.org/10.18653/v1/d19-1368 |
| primary_location.id | doi:10.18653/v1/d19-1368 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.aclweb.org/anthology/D19-1368.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) |
| primary_location.landing_page_url | https://doi.org/10.18653/v1/d19-1368 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2787051473, https://openalex.org/W2798459480, https://openalex.org/W2962850650, https://openalex.org/W3103296573, https://openalex.org/W2250635077, https://openalex.org/W2728059831, https://openalex.org/W2909137510, https://openalex.org/W2102363952, https://openalex.org/W614875374, https://openalex.org/W2963450615, https://openalex.org/W1522301498, https://openalex.org/W1533230146, https://openalex.org/W2785761199, https://openalex.org/W2766369253, https://openalex.org/W2949434543, https://openalex.org/W2226877337, https://openalex.org/W2432356473, https://openalex.org/W2963432357, https://openalex.org/W2127795553, https://openalex.org/W2022166150, https://openalex.org/W2099752825, https://openalex.org/W2963485453, https://openalex.org/W2099486982, https://openalex.org/W2964116313, https://openalex.org/W2963119656, https://openalex.org/W2964121744 |
| referenced_works_count | 26 |
| abstract_inverted_index.in | 16 |
| abstract_inverted_index.of | 9 |
| abstract_inverted_index.on | 13, 26 |
| abstract_inverted_index.9th | 22 |
| abstract_inverted_index.and | 20 |
| abstract_inverted_index.the | 10, 21 |
| abstract_inverted_index.2019 | 11 |
| abstract_inverted_index.Dave | 4 |
| abstract_inverted_index.Esma | 0 |
| abstract_inverted_index.2019. | 31 |
| abstract_inverted_index.Arpit | 6 |
| abstract_inverted_index.Joint | 24 |
| abstract_inverted_index.Masha | 2 |
| abstract_inverted_index.Balkir, | 1 |
| abstract_inverted_index.Methods | 15 |
| abstract_inverted_index.Mittal. | 7 |
| abstract_inverted_index.Natural | 17, 27 |
| abstract_inverted_index.Language | 18, 28 |
| abstract_inverted_index.Palfrey, | 5 |
| abstract_inverted_index.Empirical | 14 |
| abstract_inverted_index.Conference | 12, 25 |
| abstract_inverted_index.Naslidnyk, | 3 |
| abstract_inverted_index.Processing | 19, 29 |
| abstract_inverted_index.Proceedings | 8 |
| abstract_inverted_index.International | 23 |
| abstract_inverted_index.(EMNLP-IJCNLP). | 30 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.66384512 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |