Using permutations to assess confounding in machine learning applications for digital health Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1811.11920
Clinical machine learning applications are often plagued with confounders that can impact the generalizability and predictive performance of the learners. Confounding is especially problematic in remote digital health studies where the participants self-select to enter the study, thereby making it challenging to balance the demographic characteristics of participants. One effective approach to combat confounding is to match samples with respect to the confounding variables in order to balance the data. This procedure, however, leads to smaller datasets and hence impact the inferences drawn from the learners. Alternatively, confounding adjustment methods that make more efficient use of the data (e.g., inverse probability weighting) usually rely on modeling assumptions, and it is unclear how robust these methods are to violations of these assumptions. Here, rather than proposing a new approach to control for confounding, we develop novel permutation based statistical methods to detect and quantify the influence of observed confounders, and estimate the unconfounded performance of the learner. Our tools can be used to evaluate the effectiveness of existing confounding adjustment methods. We illustrate their application using real-life data from a Parkinson's disease mobile health study collected in an uncontrolled environment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1811.11920
- https://arxiv.org/pdf/1811.11920
- OA Status
- green
- Cited By
- 5
- References
- 15
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2901986740
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2901986740Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1811.11920Digital Object Identifier
- Title
-
Using permutations to assess confounding in machine learning applications for digital healthWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-11-29Full publication date if available
- Authors
-
Elias Chaibub Neto, Abhishek Pratap, Thanneer M. Perumal, Meghasyam Tummalacherla, Brian M. Bot, Lara M. Mangravite, Larsson OmbergList of authors in order
- Landing page
-
https://arxiv.org/abs/1811.11920Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1811.11920Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1811.11920Direct OA link when available
- Concepts
-
Confounding, Computer science, Generalizability theory, Weighting, Machine learning, Inverse probability weighting, Statistics, Artificial intelligence, Econometrics, Propensity score matching, Medicine, Mathematics, RadiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2021: 1, 2020: 2, 2019: 2Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2901986740 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1811.11920 |
| ids.doi | https://doi.org/10.48550/arxiv.1811.11920 |
| ids.mag | 2901986740 |
| ids.openalex | https://openalex.org/W2901986740 |
| fwci | |
| type | preprint |
| title | Using permutations to assess confounding in machine learning applications for digital health |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10845 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Causal Inference Techniques |
| topics[1].id | https://openalex.org/T10136 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Inference |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9959999918937683 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C77350462 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8816224336624146 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1125472 |
| concepts[0].display_name | Confounding |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6145559549331665 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C27158222 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5886459946632385 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5532422 |
| concepts[2].display_name | Generalizability theory |
| concepts[3].id | https://openalex.org/C183115368 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5857212543487549 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[3].display_name | Weighting |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.47266802191734314 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C2779915747 |
| concepts[5].level | 3 |
| concepts[5].score | 0.46361833810806274 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q17058619 |
| concepts[5].display_name | Inverse probability weighting |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.39106297492980957 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.38183528184890747 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34015166759490967 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C17923572 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2966642379760742 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7250160 |
| concepts[9].display_name | Propensity score matching |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.18694835901260376 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.16289731860160828 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| keywords[0].id | https://openalex.org/keywords/confounding |
| keywords[0].score | 0.8816224336624146 |
| keywords[0].display_name | Confounding |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6145559549331665 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/generalizability-theory |
| keywords[2].score | 0.5886459946632385 |
| keywords[2].display_name | Generalizability theory |
| keywords[3].id | https://openalex.org/keywords/weighting |
| keywords[3].score | 0.5857212543487549 |
| keywords[3].display_name | Weighting |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.47266802191734314 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/inverse-probability-weighting |
| keywords[5].score | 0.46361833810806274 |
| keywords[5].display_name | Inverse probability weighting |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.39106297492980957 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.38183528184890747 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.34015166759490967 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/propensity-score-matching |
| keywords[9].score | 0.2966642379760742 |
| keywords[9].display_name | Propensity score matching |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.18694835901260376 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.16289731860160828 |
| keywords[11].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1811.11920 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1811.11920 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1811.11920 |
| locations[1].id | mag:2901986740 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | arXiv (Cornell University) |
| locations[1].landing_page_url | https://arxiv.org/pdf/1811.11920.pdf |
| locations[2].id | doi:10.48550/arxiv.1811.11920 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400194 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | arXiv (Cornell University) |
| locations[2].source.host_organization | https://openalex.org/I205783295 |
| locations[2].source.host_organization_name | Cornell University |
| locations[2].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.48550/arxiv.1811.11920 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029959684 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9575-861X |
| authorships[0].author.display_name | Elias Chaibub Neto |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Elias Chaibub Neto |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5033638597 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5289-6932 |
| authorships[1].author.display_name | Abhishek Pratap |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Abhishek Pratap |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003980925 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1168-8982 |
| authorships[2].author.display_name | Thanneer M. Perumal |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Thanneer M Perumal |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091295638 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0741-8683 |
| authorships[3].author.display_name | Meghasyam Tummalacherla |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Meghasyam Tummalacherla |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5043737761 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2412-6826 |
| authorships[4].author.display_name | Brian M. Bot |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Brian M Bot |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5054208950 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7841-3612 |
| authorships[5].author.display_name | Lara M. Mangravite |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lara Mangravite |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5038454932 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-4719-9120 |
| authorships[6].author.display_name | Larsson Omberg |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Larsson Omberg |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1811.11920 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using permutations to assess confounding in machine learning applications for digital health |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10845 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Causal Inference Techniques |
| related_works | https://openalex.org/W2952657556, https://openalex.org/W2987690656, https://openalex.org/W3117974467, https://openalex.org/W2808393716, https://openalex.org/W1975046232, https://openalex.org/W2537384258, https://openalex.org/W3035083705, https://openalex.org/W3087582330, https://openalex.org/W2791281149, https://openalex.org/W3137465950, https://openalex.org/W2016354947, https://openalex.org/W3103956092, https://openalex.org/W3083844724, https://openalex.org/W2580744997, https://openalex.org/W1538826226, https://openalex.org/W380130840, https://openalex.org/W3205656147, https://openalex.org/W3049110353, https://openalex.org/W2948263055, https://openalex.org/W2774504787 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2021 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:arXiv.org:1811.11920 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1811.11920 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1811.11920 |
| primary_location.id | pmh:oai:arXiv.org:1811.11920 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1811.11920 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1811.11920 |
| publication_date | 2018-11-29 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W1990534247, https://openalex.org/W2207644610, https://openalex.org/W2065230098, https://openalex.org/W2557738935, https://openalex.org/W2580744997, https://openalex.org/W3106158933, https://openalex.org/W2129092711, https://openalex.org/W2328176404, https://openalex.org/W2797333853, https://openalex.org/W2029694543, https://openalex.org/W2105494575, https://openalex.org/W2162891562, https://openalex.org/W2105096466, https://openalex.org/W1999822211, https://openalex.org/W2007438860 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 125, 178 |
| abstract_inverted_index.We | 170 |
| abstract_inverted_index.an | 186 |
| abstract_inverted_index.be | 159 |
| abstract_inverted_index.in | 24, 64, 185 |
| abstract_inverted_index.is | 21, 54, 109 |
| abstract_inverted_index.it | 39, 108 |
| abstract_inverted_index.of | 17, 46, 95, 118, 145, 153, 165 |
| abstract_inverted_index.on | 104 |
| abstract_inverted_index.to | 33, 41, 51, 55, 60, 66, 74, 116, 128, 139, 161 |
| abstract_inverted_index.we | 132 |
| abstract_inverted_index.One | 48 |
| abstract_inverted_index.Our | 156 |
| abstract_inverted_index.and | 14, 77, 107, 141, 148 |
| abstract_inverted_index.are | 4, 115 |
| abstract_inverted_index.can | 10, 158 |
| abstract_inverted_index.for | 130 |
| abstract_inverted_index.how | 111 |
| abstract_inverted_index.new | 126 |
| abstract_inverted_index.the | 12, 18, 30, 35, 43, 61, 68, 80, 84, 96, 143, 150, 154, 163 |
| abstract_inverted_index.use | 94 |
| abstract_inverted_index.This | 70 |
| abstract_inverted_index.data | 97, 176 |
| abstract_inverted_index.from | 83, 177 |
| abstract_inverted_index.make | 91 |
| abstract_inverted_index.more | 92 |
| abstract_inverted_index.rely | 103 |
| abstract_inverted_index.than | 123 |
| abstract_inverted_index.that | 9, 90 |
| abstract_inverted_index.used | 160 |
| abstract_inverted_index.with | 7, 58 |
| abstract_inverted_index.Here, | 121 |
| abstract_inverted_index.based | 136 |
| abstract_inverted_index.data. | 69 |
| abstract_inverted_index.drawn | 82 |
| abstract_inverted_index.enter | 34 |
| abstract_inverted_index.hence | 78 |
| abstract_inverted_index.leads | 73 |
| abstract_inverted_index.match | 56 |
| abstract_inverted_index.novel | 134 |
| abstract_inverted_index.often | 5 |
| abstract_inverted_index.order | 65 |
| abstract_inverted_index.study | 183 |
| abstract_inverted_index.their | 172 |
| abstract_inverted_index.these | 113, 119 |
| abstract_inverted_index.tools | 157 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.where | 29 |
| abstract_inverted_index.(e.g., | 98 |
| abstract_inverted_index.combat | 52 |
| abstract_inverted_index.detect | 140 |
| abstract_inverted_index.health | 27, 182 |
| abstract_inverted_index.impact | 11, 79 |
| abstract_inverted_index.making | 38 |
| abstract_inverted_index.mobile | 181 |
| abstract_inverted_index.rather | 122 |
| abstract_inverted_index.remote | 25 |
| abstract_inverted_index.robust | 112 |
| abstract_inverted_index.study, | 36 |
| abstract_inverted_index.balance | 42, 67 |
| abstract_inverted_index.control | 129 |
| abstract_inverted_index.develop | 133 |
| abstract_inverted_index.digital | 26 |
| abstract_inverted_index.disease | 180 |
| abstract_inverted_index.inverse | 99 |
| abstract_inverted_index.machine | 1 |
| abstract_inverted_index.methods | 89, 114, 138 |
| abstract_inverted_index.plagued | 6 |
| abstract_inverted_index.respect | 59 |
| abstract_inverted_index.samples | 57 |
| abstract_inverted_index.smaller | 75 |
| abstract_inverted_index.studies | 28 |
| abstract_inverted_index.thereby | 37 |
| abstract_inverted_index.unclear | 110 |
| abstract_inverted_index.usually | 102 |
| abstract_inverted_index.Clinical | 0 |
| abstract_inverted_index.approach | 50, 127 |
| abstract_inverted_index.datasets | 76 |
| abstract_inverted_index.estimate | 149 |
| abstract_inverted_index.evaluate | 162 |
| abstract_inverted_index.existing | 166 |
| abstract_inverted_index.however, | 72 |
| abstract_inverted_index.learner. | 155 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.methods. | 169 |
| abstract_inverted_index.modeling | 105 |
| abstract_inverted_index.observed | 146 |
| abstract_inverted_index.quantify | 142 |
| abstract_inverted_index.collected | 184 |
| abstract_inverted_index.effective | 49 |
| abstract_inverted_index.efficient | 93 |
| abstract_inverted_index.influence | 144 |
| abstract_inverted_index.learners. | 19, 85 |
| abstract_inverted_index.proposing | 124 |
| abstract_inverted_index.real-life | 175 |
| abstract_inverted_index.variables | 63 |
| abstract_inverted_index.adjustment | 88, 168 |
| abstract_inverted_index.especially | 22 |
| abstract_inverted_index.illustrate | 171 |
| abstract_inverted_index.inferences | 81 |
| abstract_inverted_index.predictive | 15 |
| abstract_inverted_index.procedure, | 71 |
| abstract_inverted_index.violations | 117 |
| abstract_inverted_index.weighting) | 101 |
| abstract_inverted_index.Confounding | 20 |
| abstract_inverted_index.Parkinson's | 179 |
| abstract_inverted_index.application | 173 |
| abstract_inverted_index.challenging | 40 |
| abstract_inverted_index.confounders | 8 |
| abstract_inverted_index.confounding | 53, 62, 87, 167 |
| abstract_inverted_index.demographic | 44 |
| abstract_inverted_index.performance | 16, 152 |
| abstract_inverted_index.permutation | 135 |
| abstract_inverted_index.probability | 100 |
| abstract_inverted_index.problematic | 23 |
| abstract_inverted_index.self-select | 32 |
| abstract_inverted_index.statistical | 137 |
| abstract_inverted_index.applications | 3 |
| abstract_inverted_index.assumptions, | 106 |
| abstract_inverted_index.assumptions. | 120 |
| abstract_inverted_index.confounders, | 147 |
| abstract_inverted_index.confounding, | 131 |
| abstract_inverted_index.environment. | 188 |
| abstract_inverted_index.participants | 31 |
| abstract_inverted_index.unconfounded | 151 |
| abstract_inverted_index.uncontrolled | 187 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.participants. | 47 |
| abstract_inverted_index.Alternatively, | 86 |
| abstract_inverted_index.characteristics | 45 |
| abstract_inverted_index.generalizability | 13 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |