Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironments Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pcbi.1011361
Tumor microenvironments (TMEs) contain vast amounts of information on patient’s cancer through their cellular composition and the spatial distribution of tumor cells and immune cell populations. Exploring variations in TMEs between patient groups, as well as determining the extent to which this information can predict outcomes such as patient survival or treatment success with emerging immunotherapies, is of great interest. Moreover, in the face of a large number of cell interactions to consider, we often wish to identify specific interactions that are useful in making such predictions. We present an approach to achieve these goals based on summarizing spatial relationships in the TME using spatial K functions, and then applying functional data analysis and random forest models to both predict outcomes of interest and identify important spatial relationships. This approach is shown to be effective in simulation experiments at both identifying important spatial interactions while also controlling the false discovery rate. We further used the proposed approach to interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple negative breast cancer and lung cancer patients. The methods proposed are publicly available in a companion R package funkycells .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pcbi.1011361
- https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printable
- OA Status
- gold
- Cited By
- 1
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4399666047
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4399666047Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pcbi.1011361Digital Object Identifier
- Title
-
Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironmentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-14Full publication date if available
- Authors
-
Jeremy VanderDoes, Claire Marceaux, Kenta Yokote, Marie-Liesse Asselin-Labat, Gregory Rice, Jack HywoodList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pcbi.1011361Publisher landing page
- PDF URL
-
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printableDirect OA link when available
- Concepts
-
Spatial analysis, Computer science, Predictive power, Random forest, Medicine, Computational biology, Biology, Machine learning, Statistics, Mathematics, Epistemology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4399666047 |
|---|---|
| doi | https://doi.org/10.1371/journal.pcbi.1011361 |
| ids.doi | https://doi.org/10.1371/journal.pcbi.1011361 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38875302 |
| ids.openalex | https://openalex.org/W4399666047 |
| fwci | 0.48024723 |
| mesh[0].qualifier_ui | Q000502 |
| mesh[0].descriptor_ui | D059016 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | physiology |
| mesh[0].descriptor_name | Tumor Microenvironment |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000502 |
| mesh[2].descriptor_ui | D002450 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | physiology |
| mesh[2].descriptor_name | Cell Communication |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D019295 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Computational Biology |
| mesh[4].qualifier_ui | Q000276 |
| mesh[4].descriptor_ui | D008175 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | immunology |
| mesh[4].descriptor_name | Lung Neoplasms |
| mesh[5].qualifier_ui | Q000473 |
| mesh[5].descriptor_ui | D008175 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | pathology |
| mesh[5].descriptor_name | Lung Neoplasms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003198 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Computer Simulation |
| mesh[8].qualifier_ui | Q000473 |
| mesh[8].descriptor_ui | D064726 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | pathology |
| mesh[8].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[9].qualifier_ui | Q000276 |
| mesh[9].descriptor_ui | D064726 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | immunology |
| mesh[9].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[10].qualifier_ui | Q000276 |
| mesh[10].descriptor_ui | D009369 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | immunology |
| mesh[10].descriptor_name | Neoplasms |
| mesh[11].qualifier_ui | Q000473 |
| mesh[11].descriptor_ui | D009369 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | pathology |
| mesh[11].descriptor_name | Neoplasms |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D008954 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Models, Biological |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D005260 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Female |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000093743 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Random Forest |
| mesh[15].qualifier_ui | Q000502 |
| mesh[15].descriptor_ui | D059016 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | physiology |
| mesh[15].descriptor_name | Tumor Microenvironment |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D002450 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Cell Communication |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D019295 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Computational Biology |
| mesh[19].qualifier_ui | Q000276 |
| mesh[19].descriptor_ui | D008175 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | immunology |
| mesh[19].descriptor_name | Lung Neoplasms |
| mesh[20].qualifier_ui | Q000473 |
| mesh[20].descriptor_ui | D008175 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | pathology |
| mesh[20].descriptor_name | Lung Neoplasms |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000465 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Algorithms |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D003198 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Computer Simulation |
| mesh[23].qualifier_ui | Q000473 |
| mesh[23].descriptor_ui | D064726 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | pathology |
| mesh[23].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[24].qualifier_ui | Q000276 |
| mesh[24].descriptor_ui | D064726 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | immunology |
| mesh[24].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[25].qualifier_ui | Q000276 |
| mesh[25].descriptor_ui | D009369 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | immunology |
| mesh[25].descriptor_name | Neoplasms |
| mesh[26].qualifier_ui | Q000473 |
| mesh[26].descriptor_ui | D009369 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | pathology |
| mesh[26].descriptor_name | Neoplasms |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008954 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Models, Biological |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D005260 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Female |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D000093743 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Random Forest |
| mesh[30].qualifier_ui | Q000502 |
| mesh[30].descriptor_ui | D059016 |
| mesh[30].is_major_topic | True |
| mesh[30].qualifier_name | physiology |
| mesh[30].descriptor_name | Tumor Microenvironment |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D006801 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Humans |
| mesh[32].qualifier_ui | Q000502 |
| mesh[32].descriptor_ui | D002450 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | physiology |
| mesh[32].descriptor_name | Cell Communication |
| mesh[33].qualifier_ui | Q000379 |
| mesh[33].descriptor_ui | D019295 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | methods |
| mesh[33].descriptor_name | Computational Biology |
| mesh[34].qualifier_ui | Q000276 |
| mesh[34].descriptor_ui | D008175 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | immunology |
| mesh[34].descriptor_name | Lung Neoplasms |
| mesh[35].qualifier_ui | Q000473 |
| mesh[35].descriptor_ui | D008175 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | pathology |
| mesh[35].descriptor_name | Lung Neoplasms |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000465 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Algorithms |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D003198 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Computer Simulation |
| mesh[38].qualifier_ui | Q000473 |
| mesh[38].descriptor_ui | D064726 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | pathology |
| mesh[38].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[39].qualifier_ui | Q000276 |
| mesh[39].descriptor_ui | D064726 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | immunology |
| mesh[39].descriptor_name | Triple Negative Breast Neoplasms |
| mesh[40].qualifier_ui | Q000276 |
| mesh[40].descriptor_ui | D009369 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | immunology |
| mesh[40].descriptor_name | Neoplasms |
| mesh[41].qualifier_ui | Q000473 |
| mesh[41].descriptor_ui | D009369 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | pathology |
| mesh[41].descriptor_name | Neoplasms |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D008954 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Models, Biological |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D005260 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Female |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D000093743 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Random Forest |
| type | article |
| title | Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironments |
| awards[0].id | https://openalex.org/G103310308 |
| awards[0].funder_id | https://openalex.org/F4320334593 |
| awards[0].display_name | |
| awards[0].funder_award_id | RGPIN-03723 |
| awards[0].funder_display_name | Natural Sciences and Engineering Research Council of Canada |
| biblio.issue | 6 |
| biblio.volume | 20 |
| biblio.last_page | e1011361 |
| biblio.first_page | e1011361 |
| topics[0].id | https://openalex.org/T11289 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9991999864578247 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Single-cell and spatial transcriptomics |
| topics[1].id | https://openalex.org/T12859 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9944000244140625 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1304 |
| topics[1].subfield.display_name | Biophysics |
| topics[1].display_name | Cell Image Analysis Techniques |
| topics[2].id | https://openalex.org/T10885 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9789000153541565 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Gene expression and cancer classification |
| funders[0].id | https://openalex.org/F4320310745 |
| funders[0].ror | https://ror.org/05539km59 |
| funders[0].display_name | Sylvia and Charles Viertel Charitable Foundation |
| funders[1].id | https://openalex.org/F4320320390 |
| funders[1].ror | https://ror.org/0459phn12 |
| funders[1].display_name | Australian Cancer Research Foundation |
| funders[2].id | https://openalex.org/F4320334593 |
| funders[2].ror | https://ror.org/01h531d29 |
| funders[2].display_name | Natural Sciences and Engineering Research Council of Canada |
| is_xpac | False |
| apc_list.value | 2655 |
| apc_list.currency | USD |
| apc_list.value_usd | 2655 |
| apc_paid.value | 2655 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2655 |
| concepts[0].id | https://openalex.org/C159620131 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5806437134742737 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[0].display_name | Spatial analysis |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5190085172653198 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778136018 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5147402286529541 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q10350689 |
| concepts[2].display_name | Predictive power |
| concepts[3].id | https://openalex.org/C169258074 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4833180904388428 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[3].display_name | Random forest |
| concepts[4].id | https://openalex.org/C71924100 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3653850555419922 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[4].display_name | Medicine |
| concepts[5].id | https://openalex.org/C70721500 |
| concepts[5].level | 1 |
| concepts[5].score | 0.34577247500419617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[5].display_name | Computational biology |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.24222174286842346 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2306554615497589 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.21662411093711853 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21440839767456055 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C111472728 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[10].display_name | Epistemology |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/spatial-analysis |
| keywords[0].score | 0.5806437134742737 |
| keywords[0].display_name | Spatial analysis |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5190085172653198 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/predictive-power |
| keywords[2].score | 0.5147402286529541 |
| keywords[2].display_name | Predictive power |
| keywords[3].id | https://openalex.org/keywords/random-forest |
| keywords[3].score | 0.4833180904388428 |
| keywords[3].display_name | Random forest |
| keywords[4].id | https://openalex.org/keywords/medicine |
| keywords[4].score | 0.3653850555419922 |
| keywords[4].display_name | Medicine |
| keywords[5].id | https://openalex.org/keywords/computational-biology |
| keywords[5].score | 0.34577247500419617 |
| keywords[5].display_name | Computational biology |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.24222174286842346 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.2306554615497589 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.21662411093711853 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.21440839767456055 |
| keywords[9].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1371/journal.pcbi.1011361 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S86033158 |
| locations[0].source.issn | 1553-734X, 1553-7358 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1553-734X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS Computational Biology |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS Computational Biology |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pcbi.1011361 |
| locations[1].id | pmid:38875302 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PLoS computational biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38875302 |
| locations[2].id | pmh:oai:RePEc:plo:pcbi00:1011361 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401271 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | RePEc: Research Papers in Economics |
| locations[2].source.host_organization | https://openalex.org/I77793887 |
| locations[2].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[2].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011361 |
| locations[3].id | pmh:oai:doaj.org/article:cb32ee8d35394b8791d94581ec832a80 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PLoS Computational Biology, Vol 20, Iss 6, p e1011361 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/cb32ee8d35394b8791d94581ec832a80 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:11210873 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | other-oa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/other-oa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS Comput Biol |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11210873 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5039377539 |
| authorships[0].author.orcid | https://orcid.org/0009-0001-9885-3073 |
| authorships[0].author.display_name | Jeremy VanderDoes |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada |
| authorships[0].institutions[0].id | https://openalex.org/I151746483 |
| authorships[0].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | University of Waterloo |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jeremy VanderDoes |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada |
| authorships[1].author.id | https://openalex.org/A5037872605 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9107-8772 |
| authorships[1].author.display_name | Claire Marceaux |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196021976 |
| authorships[1].affiliations[0].raw_affiliation_string | Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I165779595 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Medical Biology, The University of Melbourne, Parkville, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I165779595 |
| authorships[1].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | The University of Melbourne |
| authorships[1].institutions[1].id | https://openalex.org/I196021976 |
| authorships[1].institutions[1].ror | https://ror.org/01b6kha49 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I196021976 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | Walter and Eliza Hall Institute of Medical Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Claire Marceaux |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Medical Biology, The University of Melbourne, Parkville, Australia, Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[2].author.id | https://openalex.org/A5052634349 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0817-7076 |
| authorships[2].author.display_name | Kenta Yokote |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I196021976 |
| authorships[2].affiliations[0].raw_affiliation_string | Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I196021976 |
| authorships[2].institutions[0].ror | https://ror.org/01b6kha49 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I196021976 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Walter and Eliza Hall Institute of Medical Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kenta Yokote |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[3].author.id | https://openalex.org/A5021654852 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7082-6076 |
| authorships[3].author.display_name | Marie-Liesse Asselin-Labat |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Medical Biology, The University of Melbourne, Parkville, Australia |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I196021976 |
| authorships[3].affiliations[1].raw_affiliation_string | Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I165779595 |
| authorships[3].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | The University of Melbourne |
| authorships[3].institutions[1].id | https://openalex.org/I196021976 |
| authorships[3].institutions[1].ror | https://ror.org/01b6kha49 |
| authorships[3].institutions[1].type | nonprofit |
| authorships[3].institutions[1].lineage | https://openalex.org/I196021976 |
| authorships[3].institutions[1].country_code | AU |
| authorships[3].institutions[1].display_name | Walter and Eliza Hall Institute of Medical Research |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Marie-Liesse Asselin-Labat |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Medical Biology, The University of Melbourne, Parkville, Australia, Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia |
| authorships[4].author.id | https://openalex.org/A5101772965 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Gregory Rice |
| authorships[4].countries | CA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I151746483 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada |
| authorships[4].institutions[0].id | https://openalex.org/I151746483 |
| authorships[4].institutions[0].ror | https://ror.org/01aff2v68 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I151746483 |
| authorships[4].institutions[0].country_code | CA |
| authorships[4].institutions[0].display_name | University of Waterloo |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gregory Rice |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada |
| authorships[5].author.id | https://openalex.org/A5064354517 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2028-2629 |
| authorships[5].author.display_name | Jack Hywood |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1320473756 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Anatomical Pathology, Royal Melbourne Hospital, Melbourne, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I1320473756 |
| authorships[5].institutions[0].ror | https://ror.org/005bvs909 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I1320473756, https://openalex.org/I4210158168 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | The Royal Melbourne Hospital |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jack D. Hywood |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | Department of Anatomical Pathology, Royal Melbourne Hospital, Melbourne, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using random forests to uncover the predictive power of distance-varying cell interactions in tumor microenvironments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-23T05:10:03.516525 |
| primary_topic.id | https://openalex.org/T11289 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9991999864578247 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Single-cell and spatial transcriptomics |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166, https://openalex.org/W1489783725, https://openalex.org/W2148612803 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1371/journal.pcbi.1011361 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S86033158 |
| best_oa_location.source.issn | 1553-734X, 1553-7358 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1553-734X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS Computational Biology |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS Computational Biology |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1011361 |
| primary_location.id | doi:10.1371/journal.pcbi.1011361 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S86033158 |
| primary_location.source.issn | 1553-734X, 1553-7358 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1553-734X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS Computational Biology |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011361&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS Computational Biology |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pcbi.1011361 |
| publication_date | 2024-06-14 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2110278085, https://openalex.org/W2043565262, https://openalex.org/W2053129129, https://openalex.org/W2193067168, https://openalex.org/W2949238013, https://openalex.org/W2955399533, https://openalex.org/W2968292465, https://openalex.org/W3191029526, https://openalex.org/W4365445777, https://openalex.org/W3201274471, https://openalex.org/W3146299734, https://openalex.org/W2890156321, https://openalex.org/W2979301772, https://openalex.org/W1535106372, https://openalex.org/W4250310729, https://openalex.org/W4253933889, https://openalex.org/W4224249440, https://openalex.org/W2913671661, https://openalex.org/W2999681746, https://openalex.org/W3011278583, https://openalex.org/W2143076195, https://openalex.org/W2032101051, https://openalex.org/W2903919837, https://openalex.org/W2609921003, https://openalex.org/W2793226746, https://openalex.org/W3095472830, https://openalex.org/W3130143514, https://openalex.org/W3170578665, https://openalex.org/W4282978405, https://openalex.org/W2474533389, https://openalex.org/W3135773872, https://openalex.org/W4281294309, https://openalex.org/W4366750863, https://openalex.org/W2109177042, https://openalex.org/W2559001417, https://openalex.org/W2430731787, https://openalex.org/W3026105145, https://openalex.org/W3182552500, https://openalex.org/W4384816777, https://openalex.org/W1960895270, https://openalex.org/W3176444924, https://openalex.org/W4295923807, https://openalex.org/W4283704002, https://openalex.org/W4229072282, https://openalex.org/W4308147454, https://openalex.org/W4362586201, https://openalex.org/W3114133228, https://openalex.org/W2911964244, https://openalex.org/W1875061881, https://openalex.org/W2042478118, https://openalex.org/W2126305855, https://openalex.org/W3007166960, https://openalex.org/W2513525442, https://openalex.org/W2148564254, https://openalex.org/W3206991757, https://openalex.org/W3102479286, https://openalex.org/W4283328704, https://openalex.org/W2484039423, https://openalex.org/W4242588920, https://openalex.org/W3047081808, https://openalex.org/W1594031697, https://openalex.org/W4225476238 |
| referenced_works_count | 62 |
| abstract_inverted_index.. | 191 |
| abstract_inverted_index.K | 105 |
| abstract_inverted_index.R | 188 |
| abstract_inverted_index.a | 65, 186 |
| abstract_inverted_index.We | 87, 151 |
| abstract_inverted_index.an | 89 |
| abstract_inverted_index.as | 33, 35, 47 |
| abstract_inverted_index.at | 138 |
| abstract_inverted_index.be | 133 |
| abstract_inverted_index.in | 28, 61, 83, 100, 135, 170, 185 |
| abstract_inverted_index.is | 56, 130 |
| abstract_inverted_index.of | 6, 19, 57, 64, 68, 121, 163, 168 |
| abstract_inverted_index.on | 8, 96 |
| abstract_inverted_index.or | 50 |
| abstract_inverted_index.to | 39, 71, 76, 91, 117, 132, 157 |
| abstract_inverted_index.we | 73 |
| abstract_inverted_index.Ion | 165 |
| abstract_inverted_index.TME | 102 |
| abstract_inverted_index.The | 179 |
| abstract_inverted_index.and | 15, 22, 107, 113, 123, 175 |
| abstract_inverted_index.are | 81, 182 |
| abstract_inverted_index.can | 43 |
| abstract_inverted_index.the | 16, 37, 62, 101, 147, 154 |
| abstract_inverted_index.two | 159 |
| abstract_inverted_index.Beam | 166 |
| abstract_inverted_index.TMEs | 29, 169 |
| abstract_inverted_index.This | 128 |
| abstract_inverted_index.also | 145 |
| abstract_inverted_index.both | 118, 139 |
| abstract_inverted_index.cell | 24, 69 |
| abstract_inverted_index.data | 111, 161 |
| abstract_inverted_index.face | 63 |
| abstract_inverted_index.lung | 176 |
| abstract_inverted_index.real | 160 |
| abstract_inverted_index.sets | 162 |
| abstract_inverted_index.such | 46, 85 |
| abstract_inverted_index.that | 80 |
| abstract_inverted_index.then | 108 |
| abstract_inverted_index.this | 41 |
| abstract_inverted_index.used | 153 |
| abstract_inverted_index.vast | 4 |
| abstract_inverted_index.well | 34 |
| abstract_inverted_index.wish | 75 |
| abstract_inverted_index.with | 53 |
| abstract_inverted_index.Tumor | 0 |
| abstract_inverted_index.based | 95 |
| abstract_inverted_index.cells | 21 |
| abstract_inverted_index.false | 148 |
| abstract_inverted_index.goals | 94 |
| abstract_inverted_index.great | 58 |
| abstract_inverted_index.large | 66 |
| abstract_inverted_index.often | 74 |
| abstract_inverted_index.rate. | 150 |
| abstract_inverted_index.shown | 131 |
| abstract_inverted_index.their | 12 |
| abstract_inverted_index.these | 93 |
| abstract_inverted_index.tumor | 20 |
| abstract_inverted_index.using | 103 |
| abstract_inverted_index.which | 40 |
| abstract_inverted_index.while | 144 |
| abstract_inverted_index.(TMEs) | 2 |
| abstract_inverted_index.Images | 167 |
| abstract_inverted_index.breast | 173 |
| abstract_inverted_index.cancer | 10, 174, 177 |
| abstract_inverted_index.extent | 38 |
| abstract_inverted_index.forest | 115 |
| abstract_inverted_index.immune | 23 |
| abstract_inverted_index.making | 84 |
| abstract_inverted_index.models | 116 |
| abstract_inverted_index.number | 67 |
| abstract_inverted_index.random | 114 |
| abstract_inverted_index.triple | 171 |
| abstract_inverted_index.useful | 82 |
| abstract_inverted_index.achieve | 92 |
| abstract_inverted_index.amounts | 5 |
| abstract_inverted_index.between | 30 |
| abstract_inverted_index.contain | 3 |
| abstract_inverted_index.further | 152 |
| abstract_inverted_index.groups, | 32 |
| abstract_inverted_index.methods | 180 |
| abstract_inverted_index.package | 189 |
| abstract_inverted_index.patient | 31, 48 |
| abstract_inverted_index.predict | 44, 119 |
| abstract_inverted_index.present | 88 |
| abstract_inverted_index.spatial | 17, 98, 104, 126, 142 |
| abstract_inverted_index.success | 52 |
| abstract_inverted_index.through | 11 |
| abstract_inverted_index.analysis | 112 |
| abstract_inverted_index.applying | 109 |
| abstract_inverted_index.approach | 90, 129, 156 |
| abstract_inverted_index.cellular | 13 |
| abstract_inverted_index.emerging | 54 |
| abstract_inverted_index.identify | 77, 124 |
| abstract_inverted_index.interest | 122 |
| abstract_inverted_index.negative | 172 |
| abstract_inverted_index.outcomes | 45, 120 |
| abstract_inverted_index.proposed | 155, 181 |
| abstract_inverted_index.publicly | 183 |
| abstract_inverted_index.specific | 78 |
| abstract_inverted_index.survival | 49 |
| abstract_inverted_index.Exploring | 26 |
| abstract_inverted_index.Moreover, | 60 |
| abstract_inverted_index.available | 184 |
| abstract_inverted_index.companion | 187 |
| abstract_inverted_index.consider, | 72 |
| abstract_inverted_index.discovery | 149 |
| abstract_inverted_index.effective | 134 |
| abstract_inverted_index.important | 125, 141 |
| abstract_inverted_index.interest. | 59 |
| abstract_inverted_index.patients. | 178 |
| abstract_inverted_index.treatment | 51 |
| abstract_inverted_index.functional | 110 |
| abstract_inverted_index.functions, | 106 |
| abstract_inverted_index.funkycells | 190 |
| abstract_inverted_index.simulation | 136 |
| abstract_inverted_index.variations | 27 |
| abstract_inverted_index.Multiplexed | 164 |
| abstract_inverted_index.composition | 14 |
| abstract_inverted_index.controlling | 146 |
| abstract_inverted_index.determining | 36 |
| abstract_inverted_index.experiments | 137 |
| abstract_inverted_index.identifying | 140 |
| abstract_inverted_index.information | 7, 42 |
| abstract_inverted_index.interrogate | 158 |
| abstract_inverted_index.patient’s | 9 |
| abstract_inverted_index.summarizing | 97 |
| abstract_inverted_index.distribution | 18 |
| abstract_inverted_index.interactions | 70, 79, 143 |
| abstract_inverted_index.populations. | 25 |
| abstract_inverted_index.predictions. | 86 |
| abstract_inverted_index.relationships | 99 |
| abstract_inverted_index.relationships. | 127 |
| abstract_inverted_index.immunotherapies, | 55 |
| abstract_inverted_index.microenvironments | 1 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5021654852, https://openalex.org/A5101772965, https://openalex.org/A5052634349, https://openalex.org/A5037872605, https://openalex.org/A5039377539, https://openalex.org/A5064354517 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I1320473756, https://openalex.org/I151746483, https://openalex.org/I165779595, https://openalex.org/I196021976 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.59039013 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |