Using reinforcement learning models in social neuroscience: frameworks, pitfalls, and suggestions of best practices Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.31234/osf.io/uthw2
Recent years have witnessed a dramatic increase in the use of reinforcement learning (RL) models in social, cognitive and affective neuroscience. This approach, in combination with neuroimaging techniques such as functional magnetic resonance imaging, enables quantitative investigations into latent mechanistic processes. However, increased use of relatively complex computational approaches has led to potential misconceptions and imprecise interpretations. Here, we present a comprehensive framework for the examination of (social) decision-making with the simple Rescorla-Wagner RL model. We discuss common pitfalls in its application and provide practical suggestions. First, with simulation, we unpack the functional role of the learning rate and pinpoint what could easily go wrong when interpreting differences in the learning rate. Then, we discuss the inevitable collinearity between outcome and prediction error in RL models and provide suggestions of how to justify whether the observed neural activation is related to the prediction error rather than outcome valence. Finally, we suggest posterior predictive check is a crucial step after model comparison, and we articulate employing hierarchical modeling for parameter estimation. We aim to provide simple and scalable explanations and practical guidelines for employing RL models to assist both beginners and advanced users in better implementing and interpreting their model-based analyses.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.31234/osf.io/uthw2
- https://psyarxiv.com/uthw2/download
- OA Status
- gold
- Cited By
- 19
- References
- 126
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4233779237
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4233779237Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.31234/osf.io/uthw2Digital Object Identifier
- Title
-
Using reinforcement learning models in social neuroscience: frameworks, pitfalls, and suggestions of best practicesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-06Full publication date if available
- Authors
-
Lei Zhang, Lukas Lengersdorff, Nace Mikuš, Jan Gläscher, Claus LammList of authors in order
- Landing page
-
https://doi.org/10.31234/osf.io/uthw2Publisher landing page
- PDF URL
-
https://psyarxiv.com/uthw2/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://psyarxiv.com/uthw2/downloadDirect OA link when available
- Concepts
-
Reinforcement learning, Computer science, Artificial intelligence, Neuroimaging, Social neuroscience, Functional magnetic resonance imaging, Machine learning, Cognitive neuroscience, Scalability, Cognitive science, Functional neuroimaging, Outcome (game theory), Cognition, Psychology, Neuroscience, Social cognition, Mathematical economics, Database, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
19Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4, 2023: 4, 2022: 8, 2021: 1, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
126Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4233779237 |
|---|---|
| doi | https://doi.org/10.31234/osf.io/uthw2 |
| ids.doi | https://doi.org/10.31234/osf.io/uthw2 |
| ids.openalex | https://openalex.org/W4233779237 |
| fwci | 1.51082316 |
| type | preprint |
| title | Using reinforcement learning models in social neuroscience: frameworks, pitfalls, and suggestions of best practices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10042 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Neural and Behavioral Psychology Studies |
| topics[1].id | https://openalex.org/T11542 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9866999983787537 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3202 |
| topics[1].subfield.display_name | Applied Psychology |
| topics[1].display_name | Behavioral Health and Interventions |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9858999848365784 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C97541855 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7863792181015015 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[0].display_name | Reinforcement learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6890171766281128 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6040686964988708 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C58693492 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5962784290313721 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[3].display_name | Neuroimaging |
| concepts[4].id | https://openalex.org/C170320452 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5406763553619385 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3111072 |
| concepts[4].display_name | Social neuroscience |
| concepts[5].id | https://openalex.org/C2779226451 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5214449763298035 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[5].display_name | Functional magnetic resonance imaging |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5205039381980896 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C17289045 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4968097507953644 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1138951 |
| concepts[7].display_name | Cognitive neuroscience |
| concepts[8].id | https://openalex.org/C48044578 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4826000928878784 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[8].display_name | Scalability |
| concepts[9].id | https://openalex.org/C188147891 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4717230200767517 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[9].display_name | Cognitive science |
| concepts[10].id | https://openalex.org/C52338299 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4246174693107605 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1004354 |
| concepts[10].display_name | Functional neuroimaging |
| concepts[11].id | https://openalex.org/C148220186 |
| concepts[11].level | 2 |
| concepts[11].score | 0.417348712682724 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7111912 |
| concepts[11].display_name | Outcome (game theory) |
| concepts[12].id | https://openalex.org/C169900460 |
| concepts[12].level | 2 |
| concepts[12].score | 0.3994867205619812 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[12].display_name | Cognition |
| concepts[13].id | https://openalex.org/C15744967 |
| concepts[13].level | 0 |
| concepts[13].score | 0.2928440570831299 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[13].display_name | Psychology |
| concepts[14].id | https://openalex.org/C169760540 |
| concepts[14].level | 1 |
| concepts[14].score | 0.25554248690605164 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[14].display_name | Neuroscience |
| concepts[15].id | https://openalex.org/C86658582 |
| concepts[15].level | 3 |
| concepts[15].score | 0.22284823656082153 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1432778 |
| concepts[15].display_name | Social cognition |
| concepts[16].id | https://openalex.org/C144237770 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[16].display_name | Mathematical economics |
| concepts[17].id | https://openalex.org/C77088390 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[17].display_name | Database |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[0].score | 0.7863792181015015 |
| keywords[0].display_name | Reinforcement learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6890171766281128 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6040686964988708 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/neuroimaging |
| keywords[3].score | 0.5962784290313721 |
| keywords[3].display_name | Neuroimaging |
| keywords[4].id | https://openalex.org/keywords/social-neuroscience |
| keywords[4].score | 0.5406763553619385 |
| keywords[4].display_name | Social neuroscience |
| keywords[5].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[5].score | 0.5214449763298035 |
| keywords[5].display_name | Functional magnetic resonance imaging |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.5205039381980896 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/cognitive-neuroscience |
| keywords[7].score | 0.4968097507953644 |
| keywords[7].display_name | Cognitive neuroscience |
| keywords[8].id | https://openalex.org/keywords/scalability |
| keywords[8].score | 0.4826000928878784 |
| keywords[8].display_name | Scalability |
| keywords[9].id | https://openalex.org/keywords/cognitive-science |
| keywords[9].score | 0.4717230200767517 |
| keywords[9].display_name | Cognitive science |
| keywords[10].id | https://openalex.org/keywords/functional-neuroimaging |
| keywords[10].score | 0.4246174693107605 |
| keywords[10].display_name | Functional neuroimaging |
| keywords[11].id | https://openalex.org/keywords/outcome |
| keywords[11].score | 0.417348712682724 |
| keywords[11].display_name | Outcome (game theory) |
| keywords[12].id | https://openalex.org/keywords/cognition |
| keywords[12].score | 0.3994867205619812 |
| keywords[12].display_name | Cognition |
| keywords[13].id | https://openalex.org/keywords/psychology |
| keywords[13].score | 0.2928440570831299 |
| keywords[13].display_name | Psychology |
| keywords[14].id | https://openalex.org/keywords/neuroscience |
| keywords[14].score | 0.25554248690605164 |
| keywords[14].display_name | Neuroscience |
| keywords[15].id | https://openalex.org/keywords/social-cognition |
| keywords[15].score | 0.22284823656082153 |
| keywords[15].display_name | Social cognition |
| language | en |
| locations[0].id | doi:10.31234/osf.io/uthw2 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://psyarxiv.com/uthw2/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.31234/osf.io/uthw2 |
| locations[1].id | pmh:oai:share.osf.io:3a140be1-f029-4f06-9dfe-952c0cf76fd6 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400047 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Arabixiv (OSF Preprints) |
| locations[1].source.host_organization | https://openalex.org/I2799848540 |
| locations[1].source.host_organization_name | Center for Open Science |
| locations[1].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Preprint |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://osf.io/uthw2 |
| locations[2].id | pmh:oai:share.osf.io:461A8-2B1-72C |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400047 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Arabixiv (OSF Preprints) |
| locations[2].source.host_organization | https://openalex.org/I2799848540 |
| locations[2].source.host_organization_name | Center for Open Science |
| locations[2].source.host_organization_lineage | https://openalex.org/I2799848540 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | preprint |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | http://doi.org/10.31234/OSF.IO/UTHW2 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100639046 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9586-595X |
| authorships[0].author.display_name | Lei Zhang |
| authorships[0].countries | AT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[0].affiliations[0].raw_affiliation_string | Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I129774422 |
| authorships[0].affiliations[1].raw_affiliation_string | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[0].institutions[0].id | https://openalex.org/I129774422 |
| authorships[0].institutions[0].ror | https://ror.org/03prydq77 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I129774422 |
| authorships[0].institutions[0].country_code | AT |
| authorships[0].institutions[0].display_name | University of Vienna |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Lei Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria, Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[1].author.id | https://openalex.org/A5002766968 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8750-5057 |
| authorships[1].author.display_name | Lukas Lengersdorff |
| authorships[1].countries | AT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[1].affiliations[0].raw_affiliation_string | Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I129774422 |
| authorships[1].affiliations[1].raw_affiliation_string | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[1].institutions[0].id | https://openalex.org/I129774422 |
| authorships[1].institutions[0].ror | https://ror.org/03prydq77 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I129774422 |
| authorships[1].institutions[0].country_code | AT |
| authorships[1].institutions[0].display_name | University of Vienna |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lukas Lengersdorff |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria, Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[2].author.id | https://openalex.org/A5074238437 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3445-9464 |
| authorships[2].author.display_name | Nace Mikuš |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[2].affiliations[0].raw_affiliation_string | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[2].institutions[0].id | https://openalex.org/I129774422 |
| authorships[2].institutions[0].ror | https://ror.org/03prydq77 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I129774422 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | University of Vienna |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Nace Mikus |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[3].author.id | https://openalex.org/A5057806170 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1020-7115 |
| authorships[3].author.display_name | Jan Gläscher |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I4210108711 |
| authorships[3].institutions[0].ror | https://ror.org/01zgy1s35 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I159176309, https://openalex.org/I4210108711 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University Medical Center Hamburg-Eppendorf |
| authorships[3].institutions[1].id | https://openalex.org/I159176309 |
| authorships[3].institutions[1].ror | https://ror.org/00g30e956 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I159176309 |
| authorships[3].institutions[1].country_code | DE |
| authorships[3].institutions[1].display_name | Universität Hamburg |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jan Gläscher |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany |
| authorships[4].author.id | https://openalex.org/A5089529725 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5422-0653 |
| authorships[4].author.display_name | Claus Lamm |
| authorships[4].countries | AT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I129774422 |
| authorships[4].affiliations[0].raw_affiliation_string | Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I129774422 |
| authorships[4].affiliations[1].raw_affiliation_string | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I129774422, https://openalex.org/I4210112164 |
| authorships[4].affiliations[2].raw_affiliation_string | Vienna Cognitive Science Hub, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| authorships[4].institutions[0].id | https://openalex.org/I4210112164 |
| authorships[4].institutions[0].ror | https://ror.org/023dz9m50 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210112164 |
| authorships[4].institutions[0].country_code | AT |
| authorships[4].institutions[0].display_name | Complexity Science Hub Vienna |
| authorships[4].institutions[1].id | https://openalex.org/I129774422 |
| authorships[4].institutions[1].ror | https://ror.org/03prydq77 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I129774422 |
| authorships[4].institutions[1].country_code | AT |
| authorships[4].institutions[1].display_name | University of Vienna |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Claus Lamm |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria, Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria, Vienna Cognitive Science Hub, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://psyarxiv.com/uthw2/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using reinforcement learning models in social neuroscience: frameworks, pitfalls, and suggestions of best practices |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10042 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Neural and Behavioral Psychology Studies |
| related_works | https://openalex.org/W2537610466, https://openalex.org/W1605634805, https://openalex.org/W3083146252, https://openalex.org/W1510704902, https://openalex.org/W2384570599, https://openalex.org/W2161685498, https://openalex.org/W4221120190, https://openalex.org/W1970066354, https://openalex.org/W1617465840, https://openalex.org/W2373367512 |
| cited_by_count | 19 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 8 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.31234/osf.io/uthw2 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://psyarxiv.com/uthw2/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.31234/osf.io/uthw2 |
| primary_location.id | doi:10.31234/osf.io/uthw2 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://psyarxiv.com/uthw2/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.31234/osf.io/uthw2 |
| publication_date | 2019-11-06 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2485636778, https://openalex.org/W6641106004, https://openalex.org/W2951536918, https://openalex.org/W2932963356, https://openalex.org/W2067113683, https://openalex.org/W6664614558, https://openalex.org/W6678111933, https://openalex.org/W6663073209, https://openalex.org/W2346426880, https://openalex.org/W6734087142, https://openalex.org/W2122307809, https://openalex.org/W2052710610, https://openalex.org/W2049657715, https://openalex.org/W6711809322, https://openalex.org/W2479411493, https://openalex.org/W6669990725, https://openalex.org/W6647443471, https://openalex.org/W1975263215, https://openalex.org/W2799253869, https://openalex.org/W2460631442, https://openalex.org/W2014979870, https://openalex.org/W6674678433, https://openalex.org/W2884813792, https://openalex.org/W6662203318, https://openalex.org/W2675909287, https://openalex.org/W2114905176, https://openalex.org/W2555490471, https://openalex.org/W2805777966, https://openalex.org/W2783187977, https://openalex.org/W2969383738, https://openalex.org/W2104148727, https://openalex.org/W2043071382, https://openalex.org/W6608676252, https://openalex.org/W2041831715, https://openalex.org/W1562837433, https://openalex.org/W2024910015, https://openalex.org/W2122834044, https://openalex.org/W2911798899, https://openalex.org/W2769003854, https://openalex.org/W2509871142, https://openalex.org/W3013366279, https://openalex.org/W2806617450, https://openalex.org/W2900070501, https://openalex.org/W2040231927, https://openalex.org/W2171056452, https://openalex.org/W2052398297, https://openalex.org/W3216293474, https://openalex.org/W2302202015, https://openalex.org/W2947920597, https://openalex.org/W2033271727, https://openalex.org/W2526753222, https://openalex.org/W2007414406, https://openalex.org/W2129478155, https://openalex.org/W2090801405, https://openalex.org/W3011912134, https://openalex.org/W2002352860, https://openalex.org/W2610253745, https://openalex.org/W2046713808, https://openalex.org/W2885593903, https://openalex.org/W2903740291, https://openalex.org/W6669374844, https://openalex.org/W2087615164, https://openalex.org/W2045968318, https://openalex.org/W160989634, https://openalex.org/W1995906064, https://openalex.org/W2007651260, https://openalex.org/W3025570388, https://openalex.org/W6675753520, https://openalex.org/W2942075992, https://openalex.org/W6754562946, https://openalex.org/W3125960483, https://openalex.org/W2946961766, https://openalex.org/W2319674571, https://openalex.org/W2000875914, https://openalex.org/W1980067272, https://openalex.org/W6631026904, https://openalex.org/W6677916085, https://openalex.org/W2040598998, https://openalex.org/W6646408798, https://openalex.org/W6700209558, https://openalex.org/W2888986758, https://openalex.org/W3164487838, https://openalex.org/W2203714058, https://openalex.org/W2547503455, https://openalex.org/W2115971452, https://openalex.org/W2885375058, https://openalex.org/W2054429734, https://openalex.org/W6760353796, https://openalex.org/W2148534890, https://openalex.org/W2111199826, https://openalex.org/W6653787065, https://openalex.org/W2951791612, https://openalex.org/W4252589412, https://openalex.org/W2096375888, https://openalex.org/W4248681815, https://openalex.org/W2105214920, https://openalex.org/W3166058989, https://openalex.org/W2766456467, https://openalex.org/W4241087911, https://openalex.org/W4229500531, https://openalex.org/W2950181669, https://openalex.org/W2077611535, https://openalex.org/W2395238965, https://openalex.org/W4214717370, https://openalex.org/W2921051283, https://openalex.org/W2590284759, https://openalex.org/W1961118323, https://openalex.org/W2013974533, https://openalex.org/W1515851193, https://openalex.org/W216263296, https://openalex.org/W3190758383, https://openalex.org/W4244008083, https://openalex.org/W1984345750, https://openalex.org/W2021831574, https://openalex.org/W4255005649, https://openalex.org/W2075135612, https://openalex.org/W2056448794, https://openalex.org/W2123429050, https://openalex.org/W2965583671, https://openalex.org/W2050730932, https://openalex.org/W1983818070, https://openalex.org/W2211196287, https://openalex.org/W4210590277, https://openalex.org/W2913867696, https://openalex.org/W4249689944, https://openalex.org/W2613492864 |
| referenced_works_count | 126 |
| abstract_inverted_index.a | 4, 60, 155 |
| abstract_inverted_index.RL | 73, 124, 183 |
| abstract_inverted_index.We | 75, 170 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.go | 103 |
| abstract_inverted_index.in | 7, 15, 23, 79, 108, 123, 192 |
| abstract_inverted_index.is | 138, 154 |
| abstract_inverted_index.of | 10, 44, 66, 94, 129 |
| abstract_inverted_index.to | 51, 131, 140, 172, 185 |
| abstract_inverted_index.we | 58, 89, 113, 149, 162 |
| abstract_inverted_index.aim | 171 |
| abstract_inverted_index.and | 18, 54, 82, 98, 120, 126, 161, 175, 178, 189, 195 |
| abstract_inverted_index.for | 63, 167, 181 |
| abstract_inverted_index.has | 49 |
| abstract_inverted_index.how | 130 |
| abstract_inverted_index.its | 80 |
| abstract_inverted_index.led | 50 |
| abstract_inverted_index.the | 8, 64, 70, 91, 95, 109, 115, 134, 141 |
| abstract_inverted_index.use | 9, 43 |
| abstract_inverted_index.(RL) | 13 |
| abstract_inverted_index.This | 21 |
| abstract_inverted_index.both | 187 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 37 |
| abstract_inverted_index.rate | 97 |
| abstract_inverted_index.role | 93 |
| abstract_inverted_index.step | 157 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.than | 145 |
| abstract_inverted_index.what | 100 |
| abstract_inverted_index.when | 105 |
| abstract_inverted_index.with | 25, 69, 87 |
| abstract_inverted_index.Here, | 57 |
| abstract_inverted_index.Then, | 112 |
| abstract_inverted_index.after | 158 |
| abstract_inverted_index.check | 153 |
| abstract_inverted_index.could | 101 |
| abstract_inverted_index.error | 122, 143 |
| abstract_inverted_index.model | 159 |
| abstract_inverted_index.rate. | 111 |
| abstract_inverted_index.their | 197 |
| abstract_inverted_index.users | 191 |
| abstract_inverted_index.wrong | 104 |
| abstract_inverted_index.years | 1 |
| abstract_inverted_index.First, | 86 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.assist | 186 |
| abstract_inverted_index.better | 193 |
| abstract_inverted_index.common | 77 |
| abstract_inverted_index.easily | 102 |
| abstract_inverted_index.latent | 38 |
| abstract_inverted_index.model. | 74 |
| abstract_inverted_index.models | 14, 125, 184 |
| abstract_inverted_index.neural | 136 |
| abstract_inverted_index.rather | 144 |
| abstract_inverted_index.simple | 71, 174 |
| abstract_inverted_index.unpack | 90 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.complex | 46 |
| abstract_inverted_index.crucial | 156 |
| abstract_inverted_index.discuss | 76, 114 |
| abstract_inverted_index.enables | 34 |
| abstract_inverted_index.justify | 132 |
| abstract_inverted_index.outcome | 119, 146 |
| abstract_inverted_index.present | 59 |
| abstract_inverted_index.provide | 83, 127, 173 |
| abstract_inverted_index.related | 139 |
| abstract_inverted_index.social, | 16 |
| abstract_inverted_index.suggest | 150 |
| abstract_inverted_index.whether | 133 |
| abstract_inverted_index.(social) | 67 |
| abstract_inverted_index.Finally, | 148 |
| abstract_inverted_index.However, | 41 |
| abstract_inverted_index.advanced | 190 |
| abstract_inverted_index.dramatic | 5 |
| abstract_inverted_index.imaging, | 33 |
| abstract_inverted_index.increase | 6 |
| abstract_inverted_index.learning | 12, 96, 110 |
| abstract_inverted_index.magnetic | 31 |
| abstract_inverted_index.modeling | 166 |
| abstract_inverted_index.observed | 135 |
| abstract_inverted_index.pinpoint | 99 |
| abstract_inverted_index.pitfalls | 78 |
| abstract_inverted_index.scalable | 176 |
| abstract_inverted_index.valence. | 147 |
| abstract_inverted_index.affective | 19 |
| abstract_inverted_index.analyses. | 199 |
| abstract_inverted_index.approach, | 22 |
| abstract_inverted_index.beginners | 188 |
| abstract_inverted_index.cognitive | 17 |
| abstract_inverted_index.employing | 164, 182 |
| abstract_inverted_index.framework | 62 |
| abstract_inverted_index.imprecise | 55 |
| abstract_inverted_index.increased | 42 |
| abstract_inverted_index.parameter | 168 |
| abstract_inverted_index.posterior | 151 |
| abstract_inverted_index.potential | 52 |
| abstract_inverted_index.practical | 84, 179 |
| abstract_inverted_index.resonance | 32 |
| abstract_inverted_index.witnessed | 3 |
| abstract_inverted_index.activation | 137 |
| abstract_inverted_index.approaches | 48 |
| abstract_inverted_index.articulate | 163 |
| abstract_inverted_index.functional | 30, 92 |
| abstract_inverted_index.guidelines | 180 |
| abstract_inverted_index.inevitable | 116 |
| abstract_inverted_index.prediction | 121, 142 |
| abstract_inverted_index.predictive | 152 |
| abstract_inverted_index.processes. | 40 |
| abstract_inverted_index.relatively | 45 |
| abstract_inverted_index.techniques | 27 |
| abstract_inverted_index.application | 81 |
| abstract_inverted_index.combination | 24 |
| abstract_inverted_index.comparison, | 160 |
| abstract_inverted_index.differences | 107 |
| abstract_inverted_index.estimation. | 169 |
| abstract_inverted_index.examination | 65 |
| abstract_inverted_index.mechanistic | 39 |
| abstract_inverted_index.model-based | 198 |
| abstract_inverted_index.simulation, | 88 |
| abstract_inverted_index.suggestions | 128 |
| abstract_inverted_index.collinearity | 117 |
| abstract_inverted_index.explanations | 177 |
| abstract_inverted_index.hierarchical | 165 |
| abstract_inverted_index.implementing | 194 |
| abstract_inverted_index.interpreting | 106, 196 |
| abstract_inverted_index.neuroimaging | 26 |
| abstract_inverted_index.quantitative | 35 |
| abstract_inverted_index.suggestions. | 85 |
| abstract_inverted_index.comprehensive | 61 |
| abstract_inverted_index.computational | 47 |
| abstract_inverted_index.neuroscience. | 20 |
| abstract_inverted_index.reinforcement | 11 |
| abstract_inverted_index.investigations | 36 |
| abstract_inverted_index.misconceptions | 53 |
| abstract_inverted_index.Rescorla-Wagner | 72 |
| abstract_inverted_index.decision-making | 68 |
| abstract_inverted_index.interpretations. | 56 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.81276024 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |