Using Residual Estimators to Detect Outliers and Potential Controlling Observations in Structural Equation Modelling: QQ Plot Approach Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.4236/ojs.2020.105053
The structural equation model (SEM) concept is generally influenced by the presence of outliers and controlling variables. To a very large extent, this could have consequential effects on the parameters and the model fitness. Though previous researches have studied outliers and controlling observations from various perspectives including the use of box plots, normal probability plots, among others, the use of uniform horizontal QQ plot is yet to be explored. This study is, therefore, aimed at applying uniform QQ plots to identifying outliers and possible controlling observations in SEM. The results showed that all the three methods of estimators manifest the ability to identify outliers and possible controlling observations in SEM. It was noted that the Anderson-Rubin estimator of QQ plot showed a more efficient or visual display of spotting outliers and possible controlling observations as compared to the other methods of estimators. Therefore, this paper provides an efficient way identifying outliers as it fragments the data set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4236/ojs.2020.105053
- http://www.scirp.org/journal/PaperDownload.aspx?paperID=103846
- OA Status
- diamond
- Cited By
- 2
- References
- 13
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3094714356
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3094714356Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4236/ojs.2020.105053Digital Object Identifier
- Title
-
Using Residual Estimators to Detect Outliers and Potential Controlling Observations in Structural Equation Modelling: QQ Plot ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
A. R. Abdul-Aziz, Albert Luguterah, Bashiru I. I. SaeedList of authors in order
- Landing page
-
https://doi.org/10.4236/ojs.2020.105053Publisher landing page
- PDF URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=103846Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=103846Direct OA link when available
- Concepts
-
Outlier, Estimator, Plot (graphics), Residual, Statistics, Computer science, Structural equation modeling, Mathematics, Econometrics, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
13Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3094714356 |
|---|---|
| doi | https://doi.org/10.4236/ojs.2020.105053 |
| ids.doi | https://doi.org/10.4236/ojs.2020.105053 |
| ids.mag | 3094714356 |
| ids.openalex | https://openalex.org/W3094714356 |
| fwci | 0.0 |
| type | article |
| title | Using Residual Estimators to Detect Outliers and Potential Controlling Observations in Structural Equation Modelling: QQ Plot Approach |
| biblio.issue | 05 |
| biblio.volume | 10 |
| biblio.last_page | 914 |
| biblio.first_page | 905 |
| topics[0].id | https://openalex.org/T11871 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Advanced Statistical Methods and Models |
| topics[1].id | https://openalex.org/T13141 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.942300021648407 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Statistical Methods and Applications |
| topics[2].id | https://openalex.org/T13748 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9043999910354614 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Advanced Statistical Modeling Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79337645 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9359797239303589 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[0].display_name | Outlier |
| concepts[1].id | https://openalex.org/C185429906 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7988108396530151 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[1].display_name | Estimator |
| concepts[2].id | https://openalex.org/C167651023 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6580643653869629 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1474611 |
| concepts[2].display_name | Plot (graphics) |
| concepts[3].id | https://openalex.org/C155512373 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6164024472236633 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[3].display_name | Residual |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5569133758544922 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4861838221549988 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C71104824 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4801749289035797 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1476639 |
| concepts[6].display_name | Structural equation modeling |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.41565030813217163 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.40757817029953003 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15109726786613464 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/outlier |
| keywords[0].score | 0.9359797239303589 |
| keywords[0].display_name | Outlier |
| keywords[1].id | https://openalex.org/keywords/estimator |
| keywords[1].score | 0.7988108396530151 |
| keywords[1].display_name | Estimator |
| keywords[2].id | https://openalex.org/keywords/plot |
| keywords[2].score | 0.6580643653869629 |
| keywords[2].display_name | Plot (graphics) |
| keywords[3].id | https://openalex.org/keywords/residual |
| keywords[3].score | 0.6164024472236633 |
| keywords[3].display_name | Residual |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.5569133758544922 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4861838221549988 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/structural-equation-modeling |
| keywords[6].score | 0.4801749289035797 |
| keywords[6].display_name | Structural equation modeling |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.41565030813217163 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.40757817029953003 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.15109726786613464 |
| keywords[9].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.4236/ojs.2020.105053 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764794781 |
| locations[0].source.issn | 2161-718X, 2161-7198 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2161-718X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Open Journal of Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_name | Scientific Research Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_lineage_names | Scientific Research Publishing |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=103846 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Open Journal of Statistics |
| locations[0].landing_page_url | https://doi.org/10.4236/ojs.2020.105053 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5111047404 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | A. R. Abdul-Aziz |
| authorships[0].countries | GH |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801516365 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics & Statistics, Kumasi Technical University (KsTU), Kumasi, Ghana |
| authorships[0].institutions[0].id | https://openalex.org/I2801516365 |
| authorships[0].institutions[0].ror | https://ror.org/00qgpp207 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801516365 |
| authorships[0].institutions[0].country_code | GH |
| authorships[0].institutions[0].display_name | Kumasi Technical University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A. R. Abdul-Aziz |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics & Statistics, Kumasi Technical University (KsTU), Kumasi, Ghana |
| authorships[1].author.id | https://openalex.org/A5023279047 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0705-4576 |
| authorships[1].author.display_name | Albert Luguterah |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4387153927 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, Faculty of Mathematical Sciences, C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana |
| authorships[1].institutions[0].id | https://openalex.org/I4387153927 |
| authorships[1].institutions[0].ror | https://ror.org/00kpq4k75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4387153927 |
| authorships[1].institutions[0].country_code | |
| authorships[1].institutions[0].display_name | C.K. Tedam University of Technology and Applied Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Albert Luguterah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, Faculty of Mathematical Sciences, C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana |
| authorships[2].author.id | https://openalex.org/A5085633521 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bashiru I. I. Saeed |
| authorships[2].countries | GH |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2800834503, https://openalex.org/I4399657950 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Statistical Sciences, Tamale Technical University (TaTU), Tamale, Ghana |
| authorships[2].institutions[0].id | https://openalex.org/I4399657950 |
| authorships[2].institutions[0].ror | https://ror.org/00xxrr382 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4399657950 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | Tamale Technical University |
| authorships[2].institutions[1].id | https://openalex.org/I2800834503 |
| authorships[2].institutions[1].ror | https://ror.org/00f9jfw45 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I2800834503 |
| authorships[2].institutions[1].country_code | GH |
| authorships[2].institutions[1].display_name | Tamale Teaching Hospital |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Bashiru I. I. Saeed |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Statistical Sciences, Tamale Technical University (TaTU), Tamale, Ghana |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=103846 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Residual Estimators to Detect Outliers and Potential Controlling Observations in Structural Equation Modelling: QQ Plot Approach |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11871 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Advanced Statistical Methods and Models |
| related_works | https://openalex.org/W2024934382, https://openalex.org/W2303173273, https://openalex.org/W2513767888, https://openalex.org/W1971798297, https://openalex.org/W3147308590, https://openalex.org/W1528049813, https://openalex.org/W1968285868, https://openalex.org/W2364043478, https://openalex.org/W4210897550, https://openalex.org/W4313645560 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4236/ojs.2020.105053 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764794781 |
| best_oa_location.source.issn | 2161-718X, 2161-7198 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2161-718X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Open Journal of Statistics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_name | Scientific Research Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_lineage_names | Scientific Research Publishing |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=103846 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Open Journal of Statistics |
| best_oa_location.landing_page_url | https://doi.org/10.4236/ojs.2020.105053 |
| primary_location.id | doi:10.4236/ojs.2020.105053 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764794781 |
| primary_location.source.issn | 2161-718X, 2161-7198 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2161-718X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Open Journal of Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_name | Scientific Research Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_lineage_names | Scientific Research Publishing |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=103846 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Open Journal of Statistics |
| primary_location.landing_page_url | https://doi.org/10.4236/ojs.2020.105053 |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2739948317, https://openalex.org/W2027683047, https://openalex.org/W2102443836, https://openalex.org/W1913697414, https://openalex.org/W2325366541, https://openalex.org/W2126365559, https://openalex.org/W2086012744, https://openalex.org/W2142168194, https://openalex.org/W2098431357, https://openalex.org/W2078055172, https://openalex.org/W1981457167, https://openalex.org/W2096475376, https://openalex.org/W4298091299 |
| referenced_works_count | 13 |
| abstract_inverted_index.a | 18, 121 |
| abstract_inverted_index.It | 110 |
| abstract_inverted_index.QQ | 62, 77, 118 |
| abstract_inverted_index.To | 17 |
| abstract_inverted_index.an | 146 |
| abstract_inverted_index.as | 134, 151 |
| abstract_inverted_index.at | 74 |
| abstract_inverted_index.be | 67 |
| abstract_inverted_index.by | 9 |
| abstract_inverted_index.in | 86, 108 |
| abstract_inverted_index.is | 6, 64 |
| abstract_inverted_index.it | 152 |
| abstract_inverted_index.of | 12, 49, 59, 96, 117, 127, 140 |
| abstract_inverted_index.on | 27 |
| abstract_inverted_index.or | 124 |
| abstract_inverted_index.to | 66, 79, 101, 136 |
| abstract_inverted_index.The | 0, 88 |
| abstract_inverted_index.all | 92 |
| abstract_inverted_index.and | 14, 30, 40, 82, 104, 130 |
| abstract_inverted_index.box | 50 |
| abstract_inverted_index.is, | 71 |
| abstract_inverted_index.the | 10, 28, 31, 47, 57, 93, 99, 114, 137, 154 |
| abstract_inverted_index.use | 48, 58 |
| abstract_inverted_index.was | 111 |
| abstract_inverted_index.way | 148 |
| abstract_inverted_index.yet | 65 |
| abstract_inverted_index.SEM. | 87, 109 |
| abstract_inverted_index.This | 69 |
| abstract_inverted_index.data | 155 |
| abstract_inverted_index.from | 43 |
| abstract_inverted_index.have | 24, 37 |
| abstract_inverted_index.more | 122 |
| abstract_inverted_index.plot | 63, 119 |
| abstract_inverted_index.set. | 156 |
| abstract_inverted_index.that | 91, 113 |
| abstract_inverted_index.this | 22, 143 |
| abstract_inverted_index.very | 19 |
| abstract_inverted_index.(SEM) | 4 |
| abstract_inverted_index.aimed | 73 |
| abstract_inverted_index.among | 55 |
| abstract_inverted_index.could | 23 |
| abstract_inverted_index.large | 20 |
| abstract_inverted_index.model | 3, 32 |
| abstract_inverted_index.noted | 112 |
| abstract_inverted_index.other | 138 |
| abstract_inverted_index.paper | 144 |
| abstract_inverted_index.plots | 78 |
| abstract_inverted_index.study | 70 |
| abstract_inverted_index.three | 94 |
| abstract_inverted_index.Though | 34 |
| abstract_inverted_index.normal | 52 |
| abstract_inverted_index.plots, | 51, 54 |
| abstract_inverted_index.showed | 90, 120 |
| abstract_inverted_index.visual | 125 |
| abstract_inverted_index.ability | 100 |
| abstract_inverted_index.concept | 5 |
| abstract_inverted_index.display | 126 |
| abstract_inverted_index.effects | 26 |
| abstract_inverted_index.extent, | 21 |
| abstract_inverted_index.methods | 95, 139 |
| abstract_inverted_index.others, | 56 |
| abstract_inverted_index.results | 89 |
| abstract_inverted_index.studied | 38 |
| abstract_inverted_index.uniform | 60, 76 |
| abstract_inverted_index.various | 44 |
| abstract_inverted_index.applying | 75 |
| abstract_inverted_index.compared | 135 |
| abstract_inverted_index.equation | 2 |
| abstract_inverted_index.fitness. | 33 |
| abstract_inverted_index.identify | 102 |
| abstract_inverted_index.manifest | 98 |
| abstract_inverted_index.outliers | 13, 39, 81, 103, 129, 150 |
| abstract_inverted_index.possible | 83, 105, 131 |
| abstract_inverted_index.presence | 11 |
| abstract_inverted_index.previous | 35 |
| abstract_inverted_index.provides | 145 |
| abstract_inverted_index.spotting | 128 |
| abstract_inverted_index.efficient | 123, 147 |
| abstract_inverted_index.estimator | 116 |
| abstract_inverted_index.explored. | 68 |
| abstract_inverted_index.fragments | 153 |
| abstract_inverted_index.generally | 7 |
| abstract_inverted_index.including | 46 |
| abstract_inverted_index.Therefore, | 142 |
| abstract_inverted_index.estimators | 97 |
| abstract_inverted_index.horizontal | 61 |
| abstract_inverted_index.influenced | 8 |
| abstract_inverted_index.parameters | 29 |
| abstract_inverted_index.researches | 36 |
| abstract_inverted_index.structural | 1 |
| abstract_inverted_index.therefore, | 72 |
| abstract_inverted_index.variables. | 16 |
| abstract_inverted_index.controlling | 15, 41, 84, 106, 132 |
| abstract_inverted_index.estimators. | 141 |
| abstract_inverted_index.identifying | 80, 149 |
| abstract_inverted_index.probability | 53 |
| abstract_inverted_index.observations | 42, 85, 107, 133 |
| abstract_inverted_index.perspectives | 45 |
| abstract_inverted_index.consequential | 25 |
| abstract_inverted_index.Anderson-Rubin | 115 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.13259641 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |