Using routinely available electronic health record data elements to develop and validate a digital divide risk score Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/jamiaopen/ooaf004
Background Digital health (patient portals, remote monitoring devices, video visits) is a routine part of health care, though the digital divide may affect access. Objectives To test and validate an electronic health record (EHR) screening tool to identify patients at risk of the digital divide. Materials and Methods We conducted a retrospective EHR data extraction and cross-sectional survey of participants within 1 health care system. We identified 4 potential digital divide markers from the EHR: (1) mobile phone number, (2) email address, (3) active patient portal, and (4) >2 patient portal logins in the last year. We mailed surveys to patients at higher risk (missing all 4 markers), intermediate risk (missing 1-3 markers), or lower risk (missing no markers). Combining EHR and survey data, we summarized the markers into risk scores and evaluated its association with patients’ report of lack of Internet access. Then, we assessed the association of EHR markers and eHealth Literacy Scale survey outcomes. Results A total of 249 patients (39.4%) completed the survey (53%>65 years, 51% female, 50% minority race, 55% rural/small town residents, 46% private insurance, 45% Medicare). Individually, the 4 EHR markers had high sensitivity (range 81%-95%) and specificity (range 65%-79%) compared with survey responses. The EHR marker-based score (high risk, intermediate risk, low risk) predicted absence of Internet access (receiver operator characteristics c-statistic=0.77). Mean digital health literacy scores significantly decreased as her marker digital divide risk increased (P <.001). Discussion Each of the four EHR markers (Cell phone, email address, patient portal active, and patient portal actively used) compared with self-report yielded high levels of sensitivity, specificity, and overall accuracy. Conclusion Using these markers, health care systems could target interventions and implementation strategies to support equitable patient access to digital health.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jamiaopen/ooaf004
- OA Status
- gold
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407134695
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407134695Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jamiaopen/ooaf004Digital Object Identifier
- Title
-
Using routinely available electronic health record data elements to develop and validate a digital divide risk scoreWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-26Full publication date if available
- Authors
-
Jamie M Faro, Emily Obermiller, Corey Obermiller, Katy E. Trinkley, Garth Wright, Rajani S. Sadasivam, Kristie L. Foley, Sarah L. Cutrona, Thomas K. HoustonList of authors in order
- Landing page
-
https://doi.org/10.1093/jamiaopen/ooaf004Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/jamiaopen/ooaf004Direct OA link when available
- Concepts
-
Electronic health record, Computer science, Health records, Digital divide, Digital health, Data science, Data mining, The Internet, World Wide Web, Health care, Political science, LawTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407134695 |
|---|---|
| doi | https://doi.org/10.1093/jamiaopen/ooaf004 |
| ids.doi | https://doi.org/10.1093/jamiaopen/ooaf004 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39906363 |
| ids.openalex | https://openalex.org/W4407134695 |
| fwci | 0.0 |
| type | article |
| title | Using routinely available electronic health record data elements to develop and validate a digital divide risk score |
| awards[0].id | https://openalex.org/G3666926553 |
| awards[0].funder_id | https://openalex.org/F4320337338 |
| awards[0].display_name | |
| awards[0].funder_award_id | K01HL163254 |
| awards[0].funder_display_name | National Heart, Lung, and Blood Institute |
| awards[1].id | https://openalex.org/G8616501140 |
| awards[1].funder_id | https://openalex.org/F4320337351 |
| awards[1].display_name | |
| awards[1].funder_award_id | 5P50CA244693 |
| awards[1].funder_display_name | National Cancer Institute |
| awards[2].id | https://openalex.org/G5892654183 |
| awards[2].funder_id | https://openalex.org/F4320309558 |
| awards[2].display_name | |
| awards[2].funder_award_id | 1UM1TR004929 |
| awards[2].funder_display_name | Wake Forest University |
| awards[3].id | https://openalex.org/G1386298073 |
| awards[3].funder_id | https://openalex.org/F4320337338 |
| awards[3].display_name | |
| awards[3].funder_award_id | K23HL161352 |
| awards[3].funder_display_name | National Heart, Lung, and Blood Institute |
| biblio.issue | 1 |
| biblio.volume | 8 |
| biblio.last_page | ooaf004 |
| biblio.first_page | ooaf004 |
| topics[0].id | https://openalex.org/T11446 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9939000010490417 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3600 |
| topics[0].subfield.display_name | General Health Professions |
| topics[0].display_name | Mobile Health and mHealth Applications |
| topics[1].id | https://openalex.org/T11995 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.9627000093460083 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1404 |
| topics[1].subfield.display_name | Management Information Systems |
| topics[1].display_name | FinTech, Crowdfunding, Digital Finance |
| topics[2].id | https://openalex.org/T10737 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9405999779701233 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3600 |
| topics[2].subfield.display_name | General Health Professions |
| topics[2].display_name | Health Literacy and Information Accessibility |
| funders[0].id | https://openalex.org/F4320309558 |
| funders[0].ror | https://ror.org/0207ad724 |
| funders[0].display_name | Wake Forest University |
| funders[1].id | https://openalex.org/F4320337338 |
| funders[1].ror | https://ror.org/012pb6c26 |
| funders[1].display_name | National Heart, Lung, and Blood Institute |
| funders[2].id | https://openalex.org/F4320337351 |
| funders[2].ror | https://ror.org/040gcmg81 |
| funders[2].display_name | National Cancer Institute |
| is_xpac | False |
| apc_list.value | 3332 |
| apc_list.currency | USD |
| apc_list.value_usd | 3332 |
| apc_paid.value | 3332 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3332 |
| concepts[0].id | https://openalex.org/C3020144179 |
| concepts[0].level | 3 |
| concepts[0].score | 0.6491886377334595 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q10871684 |
| concepts[0].display_name | Electronic health record |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5328598022460938 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C3019952477 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5147736072540283 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1324077 |
| concepts[2].display_name | Health records |
| concepts[3].id | https://openalex.org/C173655357 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4940200448036194 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q244752 |
| concepts[3].display_name | Digital divide |
| concepts[4].id | https://openalex.org/C2780433410 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4547920823097229 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5276090 |
| concepts[4].display_name | Digital health |
| concepts[5].id | https://openalex.org/C2522767166 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38364624977111816 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[5].display_name | Data science |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32606709003448486 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C110875604 |
| concepts[7].level | 2 |
| concepts[7].score | 0.2028464674949646 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[7].display_name | The Internet |
| concepts[8].id | https://openalex.org/C136764020 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1854684054851532 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[8].display_name | World Wide Web |
| concepts[9].id | https://openalex.org/C160735492 |
| concepts[9].level | 2 |
| concepts[9].score | 0.13891416788101196 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[9].display_name | Health care |
| concepts[10].id | https://openalex.org/C17744445 |
| concepts[10].level | 0 |
| concepts[10].score | 0.09135627746582031 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[10].display_name | Political science |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| keywords[0].id | https://openalex.org/keywords/electronic-health-record |
| keywords[0].score | 0.6491886377334595 |
| keywords[0].display_name | Electronic health record |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5328598022460938 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/health-records |
| keywords[2].score | 0.5147736072540283 |
| keywords[2].display_name | Health records |
| keywords[3].id | https://openalex.org/keywords/digital-divide |
| keywords[3].score | 0.4940200448036194 |
| keywords[3].display_name | Digital divide |
| keywords[4].id | https://openalex.org/keywords/digital-health |
| keywords[4].score | 0.4547920823097229 |
| keywords[4].display_name | Digital health |
| keywords[5].id | https://openalex.org/keywords/data-science |
| keywords[5].score | 0.38364624977111816 |
| keywords[5].display_name | Data science |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.32606709003448486 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/the-internet |
| keywords[7].score | 0.2028464674949646 |
| keywords[7].display_name | The Internet |
| keywords[8].id | https://openalex.org/keywords/world-wide-web |
| keywords[8].score | 0.1854684054851532 |
| keywords[8].display_name | World Wide Web |
| keywords[9].id | https://openalex.org/keywords/health-care |
| keywords[9].score | 0.13891416788101196 |
| keywords[9].display_name | Health care |
| keywords[10].id | https://openalex.org/keywords/political-science |
| keywords[10].score | 0.09135627746582031 |
| keywords[10].display_name | Political science |
| language | en |
| locations[0].id | doi:10.1093/jamiaopen/ooaf004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210237468 |
| locations[0].source.issn | 2574-2531 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2574-2531 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | JAMIA Open |
| locations[0].source.host_organization | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_name | University of Oxford |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | JAMIA Open |
| locations[0].landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf004 |
| locations[1].id | pmid:39906363 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | JAMIA open |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39906363 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11792649 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | JAMIA Open |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11792649 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5089204438 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6592-463X |
| authorships[0].author.display_name | Jamie M Faro |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I166722992 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[0].institutions[0].id | https://openalex.org/I166722992 |
| authorships[0].institutions[0].ror | https://ror.org/0464eyp60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I166722992 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Massachusetts Chan Medical School |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jamie M Faro |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[1].author.id | https://openalex.org/A5116146317 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Emily Obermiller |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47251452 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[1].institutions[0].id | https://openalex.org/I47251452 |
| authorships[1].institutions[0].ror | https://ror.org/0207ad724 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47251452 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Wake Forest University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Emily Obermiller |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[2].author.id | https://openalex.org/A5092415520 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-6948-0893 |
| authorships[2].author.display_name | Corey Obermiller |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I47251452 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[2].institutions[0].id | https://openalex.org/I47251452 |
| authorships[2].institutions[0].ror | https://ror.org/0207ad724 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47251452 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Wake Forest University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Corey Obermiller |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[3].author.id | https://openalex.org/A5077029401 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2041-7404 |
| authorships[3].author.display_name | Katy E. Trinkley |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I921990950 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Family Medicine, University of Colorado School of Medicine , Aurora, CO 80045, |
| authorships[3].institutions[0].id | https://openalex.org/I921990950 |
| authorships[3].institutions[0].ror | https://ror.org/02hh7en24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I921990950 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Colorado Denver |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Katy E Trinkley |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Family Medicine, University of Colorado School of Medicine , Aurora, CO 80045, |
| authorships[4].author.id | https://openalex.org/A5027418254 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9617-2792 |
| authorships[4].author.display_name | Garth Wright |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I921990950 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Clinical Pharmacy, University of Colorado School of Medicine , Aurora, CO 80045, |
| authorships[4].institutions[0].id | https://openalex.org/I921990950 |
| authorships[4].institutions[0].ror | https://ror.org/02hh7en24 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I921990950 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Colorado Denver |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Garth Wright |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Clinical Pharmacy, University of Colorado School of Medicine , Aurora, CO 80045, |
| authorships[5].author.id | https://openalex.org/A5040007012 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8406-6207 |
| authorships[5].author.display_name | Rajani S. Sadasivam |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I166722992 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[5].institutions[0].id | https://openalex.org/I166722992 |
| authorships[5].institutions[0].ror | https://ror.org/0464eyp60 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I166722992 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Massachusetts Chan Medical School |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Rajani S Sadasivam |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[6].author.id | https://openalex.org/A5015488485 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3759-4581 |
| authorships[6].author.display_name | Kristie L. Foley |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I47251452 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[6].institutions[0].id | https://openalex.org/I47251452 |
| authorships[6].institutions[0].ror | https://ror.org/0207ad724 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47251452 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Wake Forest University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Kristie L Foley |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Implementation Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[7].author.id | https://openalex.org/A5028621765 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-4795-8377 |
| authorships[7].author.display_name | Sarah L. Cutrona |
| authorships[7].countries | US |
| authorships[7].affiliations[0].raw_affiliation_string | Center for Health Optimization and Implementation Research, Veterans Affairs Bedford Healthcenter System , Bedford, MA 01730, |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I166722992 |
| authorships[7].affiliations[1].raw_affiliation_string | Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[7].institutions[0].id | https://openalex.org/I166722992 |
| authorships[7].institutions[0].ror | https://ror.org/0464eyp60 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I166722992 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Massachusetts Chan Medical School |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Sarah L Cutrona |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Center for Health Optimization and Implementation Research, Veterans Affairs Bedford Healthcenter System , Bedford, MA 01730,, Department of Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School , Worcester, MA 01605, |
| authorships[8].author.id | https://openalex.org/A5088248616 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2909-4018 |
| authorships[8].author.display_name | Thomas K. Houston |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I47251452 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| authorships[8].institutions[0].id | https://openalex.org/I47251452 |
| authorships[8].institutions[0].ror | https://ror.org/0207ad724 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I47251452 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Wake Forest University |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Thomas K Houston |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27101, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/jamiaopen/ooaf004 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using routinely available electronic health record data elements to develop and validate a digital divide risk score |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11446 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9939000010490417 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3600 |
| primary_topic.subfield.display_name | General Health Professions |
| primary_topic.display_name | Mobile Health and mHealth Applications |
| related_works | https://openalex.org/W187932805, https://openalex.org/W2909369938, https://openalex.org/W4392490004, https://openalex.org/W1641026212, https://openalex.org/W4402738807, https://openalex.org/W4410420109, https://openalex.org/W2911982698, https://openalex.org/W2323588885, https://openalex.org/W3047677938, https://openalex.org/W2087134418 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/jamiaopen/ooaf004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210237468 |
| best_oa_location.source.issn | 2574-2531 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2574-2531 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | JAMIA Open |
| best_oa_location.source.host_organization | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_name | University of Oxford |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | JAMIA Open |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf004 |
| primary_location.id | doi:10.1093/jamiaopen/ooaf004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210237468 |
| primary_location.source.issn | 2574-2531 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2574-2531 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | JAMIA Open |
| primary_location.source.host_organization | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_name | University of Oxford |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | JAMIA Open |
| primary_location.landing_page_url | https://doi.org/10.1093/jamiaopen/ooaf004 |
| publication_date | 2024-12-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4321769964, https://openalex.org/W3185220037, https://openalex.org/W4306730978, https://openalex.org/W4376638580, https://openalex.org/W1985605839, https://openalex.org/W2892254122, https://openalex.org/W3032766692, https://openalex.org/W4307775461, https://openalex.org/W4321457758, https://openalex.org/W1967390644, https://openalex.org/W2609455664, https://openalex.org/W3012456749, https://openalex.org/W4385281466, https://openalex.org/W2296048788, https://openalex.org/W4366350958, https://openalex.org/W2113694114, https://openalex.org/W2079980561, https://openalex.org/W3179766451, https://openalex.org/W4292202284, https://openalex.org/W3124811476, https://openalex.org/W1999164349, https://openalex.org/W2126169793, https://openalex.org/W3211748743 |
| referenced_works_count | 23 |
| abstract_inverted_index.1 | 62 |
| abstract_inverted_index.4 | 68, 107, 186 |
| abstract_inverted_index.A | 159 |
| abstract_inverted_index.a | 12, 51 |
| abstract_inverted_index.(P | 235 |
| abstract_inverted_index.To | 26 |
| abstract_inverted_index.We | 49, 66, 97 |
| abstract_inverted_index.an | 30 |
| abstract_inverted_index.as | 228 |
| abstract_inverted_index.at | 40, 102 |
| abstract_inverted_index.in | 93 |
| abstract_inverted_index.is | 11 |
| abstract_inverted_index.no | 118 |
| abstract_inverted_index.of | 15, 42, 59, 139, 141, 149, 161, 214, 239, 262 |
| abstract_inverted_index.or | 114 |
| abstract_inverted_index.to | 37, 100, 281, 286 |
| abstract_inverted_index.we | 125, 145 |
| abstract_inverted_index.(1) | 76 |
| abstract_inverted_index.(2) | 80 |
| abstract_inverted_index.(3) | 83 |
| abstract_inverted_index.(4) | 88 |
| abstract_inverted_index.1-3 | 112 |
| abstract_inverted_index.249 | 162 |
| abstract_inverted_index.45% | 182 |
| abstract_inverted_index.46% | 179 |
| abstract_inverted_index.50% | 172 |
| abstract_inverted_index.51% | 170 |
| abstract_inverted_index.55% | 175 |
| abstract_inverted_index.EHR | 53, 121, 150, 187, 203, 242 |
| abstract_inverted_index.The | 202 |
| abstract_inverted_index.all | 106 |
| abstract_inverted_index.and | 28, 47, 56, 87, 122, 132, 152, 194, 251, 265, 278 |
| abstract_inverted_index.had | 189 |
| abstract_inverted_index.her | 229 |
| abstract_inverted_index.its | 134 |
| abstract_inverted_index.low | 210 |
| abstract_inverted_index.may | 22 |
| abstract_inverted_index.the | 19, 43, 74, 94, 127, 147, 166, 185, 240 |
| abstract_inverted_index.EHR: | 75 |
| abstract_inverted_index.Each | 238 |
| abstract_inverted_index.Mean | 221 |
| abstract_inverted_index.care | 64, 273 |
| abstract_inverted_index.data | 54 |
| abstract_inverted_index.four | 241 |
| abstract_inverted_index.from | 73 |
| abstract_inverted_index.high | 190, 260 |
| abstract_inverted_index.into | 129 |
| abstract_inverted_index.lack | 140 |
| abstract_inverted_index.last | 95 |
| abstract_inverted_index.part | 14 |
| abstract_inverted_index.risk | 41, 104, 110, 116, 130, 233 |
| abstract_inverted_index.test | 27 |
| abstract_inverted_index.tool | 36 |
| abstract_inverted_index.town | 177 |
| abstract_inverted_index.with | 136, 199, 257 |
| abstract_inverted_index.(Cell | 244 |
| abstract_inverted_index.(EHR) | 34 |
| abstract_inverted_index.(high | 206 |
| abstract_inverted_index.Scale | 155 |
| abstract_inverted_index.Then, | 144 |
| abstract_inverted_index.Using | 269 |
| abstract_inverted_index.care, | 17 |
| abstract_inverted_index.could | 275 |
| abstract_inverted_index.data, | 124 |
| abstract_inverted_index.email | 81, 246 |
| abstract_inverted_index.lower | 115 |
| abstract_inverted_index.phone | 78 |
| abstract_inverted_index.race, | 174 |
| abstract_inverted_index.risk) | 211 |
| abstract_inverted_index.risk, | 207, 209 |
| abstract_inverted_index.score | 205 |
| abstract_inverted_index.these | 270 |
| abstract_inverted_index.total | 160 |
| abstract_inverted_index.used) | 255 |
| abstract_inverted_index.video | 9 |
| abstract_inverted_index.year. | 96 |
| abstract_inverted_index.(range | 192, 196 |
| abstract_inverted_index.access | 216, 285 |
| abstract_inverted_index.active | 84 |
| abstract_inverted_index.affect | 23 |
| abstract_inverted_index.divide | 21, 71, 232 |
| abstract_inverted_index.health | 3, 16, 32, 63, 223, 272 |
| abstract_inverted_index.higher | 103 |
| abstract_inverted_index.levels | 261 |
| abstract_inverted_index.logins | 92 |
| abstract_inverted_index.mailed | 98 |
| abstract_inverted_index.marker | 230 |
| abstract_inverted_index.mobile | 77 |
| abstract_inverted_index.phone, | 245 |
| abstract_inverted_index.portal | 91, 249, 253 |
| abstract_inverted_index.record | 33 |
| abstract_inverted_index.remote | 6 |
| abstract_inverted_index.report | 138 |
| abstract_inverted_index.scores | 131, 225 |
| abstract_inverted_index.survey | 58, 123, 156, 167, 200 |
| abstract_inverted_index.target | 276 |
| abstract_inverted_index.though | 18 |
| abstract_inverted_index.within | 61 |
| abstract_inverted_index.years, | 169 |
| abstract_inverted_index.(39.4%) | 164 |
| abstract_inverted_index.Digital | 2 |
| abstract_inverted_index.Methods | 48 |
| abstract_inverted_index.Results | 158 |
| abstract_inverted_index.absence | 213 |
| abstract_inverted_index.access. | 24, 143 |
| abstract_inverted_index.active, | 250 |
| abstract_inverted_index.digital | 20, 44, 70, 222, 231, 287 |
| abstract_inverted_index.divide. | 45 |
| abstract_inverted_index.eHealth | 153 |
| abstract_inverted_index.female, | 171 |
| abstract_inverted_index.health. | 288 |
| abstract_inverted_index.markers | 72, 128, 151, 188, 243 |
| abstract_inverted_index.number, | 79 |
| abstract_inverted_index.overall | 266 |
| abstract_inverted_index.patient | 85, 90, 248, 252, 284 |
| abstract_inverted_index.portal, | 86 |
| abstract_inverted_index.private | 180 |
| abstract_inverted_index.routine | 13 |
| abstract_inverted_index.support | 282 |
| abstract_inverted_index.surveys | 99 |
| abstract_inverted_index.system. | 65 |
| abstract_inverted_index.systems | 274 |
| abstract_inverted_index.visits) | 10 |
| abstract_inverted_index.yielded | 259 |
| abstract_inverted_index.(missing | 105, 111, 117 |
| abstract_inverted_index.(patient | 4 |
| abstract_inverted_index.65%-79%) | 197 |
| abstract_inverted_index.81%-95%) | 193 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Internet | 142, 215 |
| abstract_inverted_index.Literacy | 154 |
| abstract_inverted_index.actively | 254 |
| abstract_inverted_index.address, | 82, 247 |
| abstract_inverted_index.assessed | 146 |
| abstract_inverted_index.compared | 198, 256 |
| abstract_inverted_index.devices, | 8 |
| abstract_inverted_index.identify | 38 |
| abstract_inverted_index.literacy | 224 |
| abstract_inverted_index.markers, | 271 |
| abstract_inverted_index.minority | 173 |
| abstract_inverted_index.operator | 218 |
| abstract_inverted_index.patients | 39, 101, 163 |
| abstract_inverted_index.portals, | 5 |
| abstract_inverted_index.validate | 29 |
| abstract_inverted_index.&gt;2 | 89 |
| abstract_inverted_index.(receiver | 217 |
| abstract_inverted_index.Combining | 120 |
| abstract_inverted_index.Materials | 46 |
| abstract_inverted_index.accuracy. | 267 |
| abstract_inverted_index.completed | 165 |
| abstract_inverted_index.conducted | 50 |
| abstract_inverted_index.decreased | 227 |
| abstract_inverted_index.equitable | 283 |
| abstract_inverted_index.evaluated | 133 |
| abstract_inverted_index.increased | 234 |
| abstract_inverted_index.markers), | 108, 113 |
| abstract_inverted_index.markers). | 119 |
| abstract_inverted_index.outcomes. | 157 |
| abstract_inverted_index.potential | 69 |
| abstract_inverted_index.predicted | 212 |
| abstract_inverted_index.screening | 35 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Conclusion | 268 |
| abstract_inverted_index.Discussion | 237 |
| abstract_inverted_index.Medicare). | 183 |
| abstract_inverted_index.Objectives | 25 |
| abstract_inverted_index.electronic | 31 |
| abstract_inverted_index.extraction | 55 |
| abstract_inverted_index.identified | 67 |
| abstract_inverted_index.insurance, | 181 |
| abstract_inverted_index.monitoring | 7 |
| abstract_inverted_index.residents, | 178 |
| abstract_inverted_index.responses. | 201 |
| abstract_inverted_index.strategies | 280 |
| abstract_inverted_index.summarized | 126 |
| abstract_inverted_index.association | 135, 148 |
| abstract_inverted_index.patients’ | 137 |
| abstract_inverted_index.rural/small | 176 |
| abstract_inverted_index.self-report | 258 |
| abstract_inverted_index.sensitivity | 191 |
| abstract_inverted_index.specificity | 195 |
| abstract_inverted_index.intermediate | 109, 208 |
| abstract_inverted_index.marker-based | 204 |
| abstract_inverted_index.participants | 60 |
| abstract_inverted_index.sensitivity, | 263 |
| abstract_inverted_index.specificity, | 264 |
| abstract_inverted_index.Individually, | 184 |
| abstract_inverted_index.interventions | 277 |
| abstract_inverted_index.retrospective | 52 |
| abstract_inverted_index.significantly | 226 |
| abstract_inverted_index.&lt;.001). | 236 |
| abstract_inverted_index.(53%&gt;65 | 168 |
| abstract_inverted_index.implementation | 279 |
| abstract_inverted_index.characteristics | 219 |
| abstract_inverted_index.cross-sectional | 57 |
| abstract_inverted_index.c-statistic=0.77). | 220 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.8999999761581421 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.50498475 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |