Using Rule-Based Labels for Weak Supervised Learning Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1145/3219819.3219838
With access to large datasets, deep neural networks (DNN) have achieved human-level accuracy in image and speech recognition tasks. However, in chemistry data is inherently small and fragmented. In this work, we develop an approach of using rule-based knowledge for training ChemNet, a transferable and generalizable deep neural network for chemical property prediction that learns in a weak-supervised manner from large unlabeled chemical databases. When coupled with transfer learning approaches to predict other smaller datasets for chemical properties that it was not originally trained on, we show that ChemNet's accuracy outperforms contemporary DNN models that were trained using conventional supervised learning. Furthermore, we demonstrate that the ChemNet pre-training approach is equally effective on both CNN (Chemception) and RNN (SMILES2vec) models, indicating that this approach is network architecture agnostic and is effective across multiple data modalities. Our results indicate a pre-trained ChemNet that incorporates chemistry domain knowledge and enables the development of generalizable neural networks for more accurate prediction of novel chemical properties.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3219819.3219838
- https://dl.acm.org/doi/pdf/10.1145/3219819.3219838
- OA Status
- gold
- Cited By
- 83
- References
- 29
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2962764460
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2962764460Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3219819.3219838Digital Object Identifier
- Title
-
Using Rule-Based Labels for Weak Supervised LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-07-19Full publication date if available
- Authors
-
Garrett B. Goh, Charles Siegel, Abhinav Vishnu, Nathan O. HodasList of authors in order
- Landing page
-
https://doi.org/10.1145/3219819.3219838Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3219819.3219838Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3219819.3219838Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Machine learning, Transfer of learning, Artificial neural network, Property (philosophy), Modalities, Domain (mathematical analysis), Deep learning, Training set, Labeled data, Domain knowledge, Deep neural networks, Supervised learning, Pattern recognition (psychology), Mathematics, Philosophy, Social science, Sociology, Epistemology, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
83Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 9, 2023: 11, 2022: 8, 2021: 18Per-year citation counts (last 5 years)
- References (count)
-
29Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2962764460 |
|---|---|
| doi | https://doi.org/10.1145/3219819.3219838 |
| ids.doi | https://doi.org/10.1145/3219819.3219838 |
| ids.mag | 2962764460 |
| ids.openalex | https://openalex.org/W2962764460 |
| fwci | 11.89276434 |
| type | article |
| title | Using Rule-Based Labels for Weak Supervised Learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 310 |
| biblio.first_page | 302 |
| topics[0].id | https://openalex.org/T10211 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Computational Drug Discovery Methods |
| topics[1].id | https://openalex.org/T11948 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | Machine Learning in Materials Science |
| topics[2].id | https://openalex.org/T10908 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.9884999990463257 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1607 |
| topics[2].subfield.display_name | Spectroscopy |
| topics[2].display_name | Analytical Chemistry and Chromatography |
| funders[0].id | https://openalex.org/F4320338354 |
| funders[0].ror | https://ror.org/05h992307 |
| funders[0].display_name | Pacific Northwest National Laboratory |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7739733457565308 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7304714918136597 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C119857082 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6514984369277954 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[2].display_name | Machine learning |
| concepts[3].id | https://openalex.org/C150899416 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6445826292037964 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[3].display_name | Transfer of learning |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6082496047019958 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C189950617 |
| concepts[5].level | 2 |
| concepts[5].score | 0.488915354013443 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q937228 |
| concepts[5].display_name | Property (philosophy) |
| concepts[6].id | https://openalex.org/C2779903281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48771247267723083 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[6].display_name | Modalities |
| concepts[7].id | https://openalex.org/C36503486 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4807695746421814 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[7].display_name | Domain (mathematical analysis) |
| concepts[8].id | https://openalex.org/C108583219 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4792318642139435 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[8].display_name | Deep learning |
| concepts[9].id | https://openalex.org/C51632099 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4599986970424652 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3985153 |
| concepts[9].display_name | Training set |
| concepts[10].id | https://openalex.org/C2776145971 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45896223187446594 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q30673951 |
| concepts[10].display_name | Labeled data |
| concepts[11].id | https://openalex.org/C207685749 |
| concepts[11].level | 2 |
| concepts[11].score | 0.43325352668762207 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2088941 |
| concepts[11].display_name | Domain knowledge |
| concepts[12].id | https://openalex.org/C2984842247 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4240271747112274 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[12].display_name | Deep neural networks |
| concepts[13].id | https://openalex.org/C136389625 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4225904941558838 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q334384 |
| concepts[13].display_name | Supervised learning |
| concepts[14].id | https://openalex.org/C153180895 |
| concepts[14].level | 2 |
| concepts[14].score | 0.37146589159965515 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[14].display_name | Pattern recognition (psychology) |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.07479774951934814 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C36289849 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[17].display_name | Social science |
| concepts[18].id | https://openalex.org/C144024400 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[18].display_name | Sociology |
| concepts[19].id | https://openalex.org/C111472728 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[19].display_name | Epistemology |
| concepts[20].id | https://openalex.org/C134306372 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[20].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7739733457565308 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7304714918136597 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/machine-learning |
| keywords[2].score | 0.6514984369277954 |
| keywords[2].display_name | Machine learning |
| keywords[3].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[3].score | 0.6445826292037964 |
| keywords[3].display_name | Transfer of learning |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6082496047019958 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/property |
| keywords[5].score | 0.488915354013443 |
| keywords[5].display_name | Property (philosophy) |
| keywords[6].id | https://openalex.org/keywords/modalities |
| keywords[6].score | 0.48771247267723083 |
| keywords[6].display_name | Modalities |
| keywords[7].id | https://openalex.org/keywords/domain |
| keywords[7].score | 0.4807695746421814 |
| keywords[7].display_name | Domain (mathematical analysis) |
| keywords[8].id | https://openalex.org/keywords/deep-learning |
| keywords[8].score | 0.4792318642139435 |
| keywords[8].display_name | Deep learning |
| keywords[9].id | https://openalex.org/keywords/training-set |
| keywords[9].score | 0.4599986970424652 |
| keywords[9].display_name | Training set |
| keywords[10].id | https://openalex.org/keywords/labeled-data |
| keywords[10].score | 0.45896223187446594 |
| keywords[10].display_name | Labeled data |
| keywords[11].id | https://openalex.org/keywords/domain-knowledge |
| keywords[11].score | 0.43325352668762207 |
| keywords[11].display_name | Domain knowledge |
| keywords[12].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[12].score | 0.4240271747112274 |
| keywords[12].display_name | Deep neural networks |
| keywords[13].id | https://openalex.org/keywords/supervised-learning |
| keywords[13].score | 0.4225904941558838 |
| keywords[13].display_name | Supervised learning |
| keywords[14].id | https://openalex.org/keywords/pattern-recognition |
| keywords[14].score | 0.37146589159965515 |
| keywords[14].display_name | Pattern recognition (psychology) |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.07479774951934814 |
| keywords[15].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1145/3219819.3219838 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3219819.3219838 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |
| locations[0].landing_page_url | https://doi.org/10.1145/3219819.3219838 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5072984510 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8858-0868 |
| authorships[0].author.display_name | Garrett B. Goh |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[0].affiliations[0].raw_affiliation_string | Pacific Northwest National Lab (PNNL), Richland, WA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I142606810 |
| authorships[0].institutions[0].ror | https://ror.org/05h992307 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Garrett B. Goh |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Pacific Northwest National Lab (PNNL), Richland, WA, USA |
| authorships[1].author.id | https://openalex.org/A5058970517 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6644-5764 |
| authorships[1].author.display_name | Charles Siegel |
| authorships[1].affiliations[0].raw_affiliation_string | Cray Inc., Seattle, WA, USA |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Charles Siegel |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cray Inc., Seattle, WA, USA |
| authorships[2].author.id | https://openalex.org/A5009322871 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0593-4780 |
| authorships[2].author.display_name | Abhinav Vishnu |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210137977 |
| authorships[2].affiliations[0].raw_affiliation_string | Advanced Micro Devices Inc., Austin, TX, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210137977 |
| authorships[2].institutions[0].ror | https://ror.org/04kd6c783 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210137977 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Advanced Micro Devices (United States) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Abhinav Vishnu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Advanced Micro Devices Inc., Austin, TX, USA |
| authorships[3].author.id | https://openalex.org/A5023448303 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1914-0057 |
| authorships[3].author.display_name | Nathan O. Hodas |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I142606810 |
| authorships[3].affiliations[0].raw_affiliation_string | Pacific Northwest National Lab (PNNL), Richland, WA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I142606810 |
| authorships[3].institutions[0].ror | https://ror.org/05h992307 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1325736334, https://openalex.org/I1330989302, https://openalex.org/I142606810, https://openalex.org/I39565521 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Pacific Northwest National Laboratory |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Nathan Hodas |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pacific Northwest National Lab (PNNL), Richland, WA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3219819.3219838 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Using Rule-Based Labels for Weak Supervised Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10211 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Computational Drug Discovery Methods |
| related_works | https://openalex.org/W4317548404, https://openalex.org/W3022007134, https://openalex.org/W2949671220, https://openalex.org/W2130553454, https://openalex.org/W2033364610, https://openalex.org/W2797776314, https://openalex.org/W3163689946, https://openalex.org/W2153927146, https://openalex.org/W1459710595, https://openalex.org/W2168489430 |
| cited_by_count | 83 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 11 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 18 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 16 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 12 |
| counts_by_year[7].year | 2018 |
| counts_by_year[7].cited_by_count | 2 |
| counts_by_year[8].year | 2017 |
| counts_by_year[8].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3219819.3219838 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3219819.3219838 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3219819.3219838 |
| primary_location.id | doi:10.1145/3219819.3219838 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3219819.3219838 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining |
| primary_location.landing_page_url | https://doi.org/10.1145/3219819.3219838 |
| publication_date | 2018-07-19 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W2134473756, https://openalex.org/W1989383117, https://openalex.org/W2033757486, https://openalex.org/W1677182931, https://openalex.org/W2290847742, https://openalex.org/W2177317049, https://openalex.org/W2189911347, https://openalex.org/W2161381512, https://openalex.org/W1993332913, https://openalex.org/W2117539524, https://openalex.org/W2097117768, https://openalex.org/W1545231783, https://openalex.org/W1975147762, https://openalex.org/W2214665483, https://openalex.org/W3100157108, https://openalex.org/W2213443318, https://openalex.org/W2604296437, https://openalex.org/W2087248274, https://openalex.org/W2582187633, https://openalex.org/W2043383571, https://openalex.org/W1655274992, https://openalex.org/W2953384591, https://openalex.org/W2771577156, https://openalex.org/W2294712740, https://openalex.org/W2964113829, https://openalex.org/W2685808923, https://openalex.org/W2096541451, https://openalex.org/W1738019091, https://openalex.org/W2501213466 |
| referenced_works_count | 29 |
| abstract_inverted_index.a | 42, 56, 138 |
| abstract_inverted_index.In | 28 |
| abstract_inverted_index.an | 33 |
| abstract_inverted_index.in | 13, 20, 55 |
| abstract_inverted_index.is | 23, 109, 124, 129 |
| abstract_inverted_index.it | 79 |
| abstract_inverted_index.of | 35, 150, 158 |
| abstract_inverted_index.on | 112 |
| abstract_inverted_index.to | 2, 70 |
| abstract_inverted_index.we | 31, 85, 102 |
| abstract_inverted_index.CNN | 114 |
| abstract_inverted_index.DNN | 92 |
| abstract_inverted_index.Our | 135 |
| abstract_inverted_index.RNN | 117 |
| abstract_inverted_index.and | 15, 26, 44, 116, 128, 146 |
| abstract_inverted_index.for | 39, 49, 75, 154 |
| abstract_inverted_index.not | 81 |
| abstract_inverted_index.on, | 84 |
| abstract_inverted_index.the | 105, 148 |
| abstract_inverted_index.was | 80 |
| abstract_inverted_index.When | 64 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.both | 113 |
| abstract_inverted_index.data | 22, 133 |
| abstract_inverted_index.deep | 5, 46 |
| abstract_inverted_index.from | 59 |
| abstract_inverted_index.have | 9 |
| abstract_inverted_index.more | 155 |
| abstract_inverted_index.show | 86 |
| abstract_inverted_index.that | 53, 78, 87, 94, 104, 121, 141 |
| abstract_inverted_index.this | 29, 122 |
| abstract_inverted_index.were | 95 |
| abstract_inverted_index.with | 66 |
| abstract_inverted_index.(DNN) | 8 |
| abstract_inverted_index.image | 14 |
| abstract_inverted_index.large | 3, 60 |
| abstract_inverted_index.novel | 159 |
| abstract_inverted_index.other | 72 |
| abstract_inverted_index.small | 25 |
| abstract_inverted_index.using | 36, 97 |
| abstract_inverted_index.work, | 30 |
| abstract_inverted_index.access | 1 |
| abstract_inverted_index.across | 131 |
| abstract_inverted_index.domain | 144 |
| abstract_inverted_index.learns | 54 |
| abstract_inverted_index.manner | 58 |
| abstract_inverted_index.models | 93 |
| abstract_inverted_index.neural | 6, 47, 152 |
| abstract_inverted_index.speech | 16 |
| abstract_inverted_index.tasks. | 18 |
| abstract_inverted_index.ChemNet | 106, 140 |
| abstract_inverted_index.coupled | 65 |
| abstract_inverted_index.develop | 32 |
| abstract_inverted_index.enables | 147 |
| abstract_inverted_index.equally | 110 |
| abstract_inverted_index.models, | 119 |
| abstract_inverted_index.network | 48, 125 |
| abstract_inverted_index.predict | 71 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.smaller | 73 |
| abstract_inverted_index.trained | 83, 96 |
| abstract_inverted_index.ChemNet, | 41 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.accuracy | 12, 89 |
| abstract_inverted_index.accurate | 156 |
| abstract_inverted_index.achieved | 10 |
| abstract_inverted_index.agnostic | 127 |
| abstract_inverted_index.approach | 34, 108, 123 |
| abstract_inverted_index.chemical | 50, 62, 76, 160 |
| abstract_inverted_index.datasets | 74 |
| abstract_inverted_index.indicate | 137 |
| abstract_inverted_index.learning | 68 |
| abstract_inverted_index.multiple | 132 |
| abstract_inverted_index.networks | 7, 153 |
| abstract_inverted_index.property | 51 |
| abstract_inverted_index.training | 40 |
| abstract_inverted_index.transfer | 67 |
| abstract_inverted_index.ChemNet's | 88 |
| abstract_inverted_index.chemistry | 21, 143 |
| abstract_inverted_index.datasets, | 4 |
| abstract_inverted_index.effective | 111, 130 |
| abstract_inverted_index.knowledge | 38, 145 |
| abstract_inverted_index.learning. | 100 |
| abstract_inverted_index.unlabeled | 61 |
| abstract_inverted_index.approaches | 69 |
| abstract_inverted_index.databases. | 63 |
| abstract_inverted_index.indicating | 120 |
| abstract_inverted_index.inherently | 24 |
| abstract_inverted_index.originally | 82 |
| abstract_inverted_index.prediction | 52, 157 |
| abstract_inverted_index.properties | 77 |
| abstract_inverted_index.rule-based | 37 |
| abstract_inverted_index.supervised | 99 |
| abstract_inverted_index.demonstrate | 103 |
| abstract_inverted_index.development | 149 |
| abstract_inverted_index.fragmented. | 27 |
| abstract_inverted_index.human-level | 11 |
| abstract_inverted_index.modalities. | 134 |
| abstract_inverted_index.outperforms | 90 |
| abstract_inverted_index.pre-trained | 139 |
| abstract_inverted_index.properties. | 161 |
| abstract_inverted_index.recognition | 17 |
| abstract_inverted_index.(SMILES2vec) | 118 |
| abstract_inverted_index.Furthermore, | 101 |
| abstract_inverted_index.architecture | 126 |
| abstract_inverted_index.contemporary | 91 |
| abstract_inverted_index.conventional | 98 |
| abstract_inverted_index.incorporates | 142 |
| abstract_inverted_index.pre-training | 107 |
| abstract_inverted_index.transferable | 43 |
| abstract_inverted_index.(Chemception) | 115 |
| abstract_inverted_index.generalizable | 45, 151 |
| abstract_inverted_index.weak-supervised | 57 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5699999928474426 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.98646115 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |