Utility of data-driven clusters for the prevention of type 2 diabetes Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1093/eurpub/ckaa165.549
Background Type 2 diabetes (T2D) is an important cause of mortality, disability and health care expenditures. Prevention is crucial to counter global trends, but individual variability of different risk factors leading to T2D has made prevention difficult to achieve. We aimed to identify clusters of individuals based on individual level characteristics of different risk factors using a data driven approach. Methods We used data from the Stockholm Diabetes Prevention Program. A population-based, prospective study. Healthy participants who were born in Sweden and aged 35 to 55 years old were recruited between 1992 and 1998 and followed up after 10 and 20 years. At each visit, participants answered extensive questionnaires, anthropometric measures, laboratory examinations and an oral glucose tolerance test. We used age, sex, family history of diabetes, fasting and two hours glucose and insulin, body mass index (BMI), systolic and diastolic blood pressure, and level of education were at baseline to group participants using the k-prototype algorithm. We then examined the risk of diabetes between clusters using survival analysis. Results A total of 7,173 participants representing 138,942 person years of follow-up were included in this study. Among them, 998 (14%) developed T2D. We identified six stable clusters: the group with the lowest cumulative incidence of T2D (2.3%) was used as reference (n = 1,265). In the group with the highest risk, 47% developed T2D (n = 772, HR 26.3, 95%CI 17.9-38.5) followed by 17.1% (n = 1,146, HR 7.6, 95%CI 5.1-11.22), 15.2% (n = 1,453, HR 6.7, 95%CI 4.5-9.8), 9.5% (n = 1,384, HR 4.1, 95%CI 2.8-6.2) and 5.2% (n = 1,157, HR 2.0, 95%CI 1.3-3.1) in the remaining groups. Conclusions There is important variability between individuals regarding the effect of different risk factors on the incidence of T2D. Data driven categorization strategies can be useful epidemiological tools to pave the way for more precise T2D intervention programs. Key messages Prevention strategies for T2D usually follow a one-size fits all approach, ignoring the important variability of risk factors and their consequences among individuals. It is possible to identify subgroups of people with different risk of T2D based on simple clinical and phenotypical characteristics, and could help to improve prevention and treatment of T2D.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/eurpub/ckaa165.549
- https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdf
- OA Status
- bronze
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3092472732
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3092472732Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/eurpub/ckaa165.549Digital Object Identifier
- Title
-
Utility of data-driven clusters for the prevention of type 2 diabetesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-09-01Full publication date if available
- Authors
-
Diego Yacamán-Méndez, Minchun Zhou, Antônio Ponce de León, David Ebbevi, Anton LagerList of authors in order
- Landing page
-
https://doi.org/10.1093/eurpub/ckaa165.549Publisher landing page
- PDF URL
-
https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdfDirect OA link when available
- Concepts
-
Medicine, Type 2 diabetes, Body mass index, Diabetes mellitus, Anthropometry, Family history, Incidence (geometry), Population, Demography, Blood pressure, Hazard ratio, Gerontology, Internal medicine, Environmental health, Endocrinology, Confidence interval, Optics, Physics, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3092472732 |
|---|---|
| doi | https://doi.org/10.1093/eurpub/ckaa165.549 |
| ids.doi | https://doi.org/10.1093/eurpub/ckaa165.549 |
| ids.mag | 3092472732 |
| ids.openalex | https://openalex.org/W3092472732 |
| fwci | 0.0 |
| type | article |
| title | Utility of data-driven clusters for the prevention of type 2 diabetes |
| biblio.issue | Supplement_5 |
| biblio.volume | 30 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10793 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2712 |
| topics[0].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[0].display_name | Diabetes Management and Education |
| topics[1].id | https://openalex.org/T10560 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diabetes Management and Research |
| topics[2].id | https://openalex.org/T10027 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.986299991607666 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| is_xpac | False |
| apc_list.value | 2553 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2753 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8450895547866821 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2777180221 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6795268654823303 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3025883 |
| concepts[1].display_name | Type 2 diabetes |
| concepts[2].id | https://openalex.org/C2780221984 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6716647148132324 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q131191 |
| concepts[2].display_name | Body mass index |
| concepts[3].id | https://openalex.org/C555293320 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6172440648078918 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12206 |
| concepts[3].display_name | Diabetes mellitus |
| concepts[4].id | https://openalex.org/C61427482 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5838017463684082 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q6656244 |
| concepts[4].display_name | Anthropometry |
| concepts[5].id | https://openalex.org/C2781179581 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5589496493339539 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2857712 |
| concepts[5].display_name | Family history |
| concepts[6].id | https://openalex.org/C61511704 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5376184582710266 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1671857 |
| concepts[6].display_name | Incidence (geometry) |
| concepts[7].id | https://openalex.org/C2908647359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5101516842842102 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[7].display_name | Population |
| concepts[8].id | https://openalex.org/C149923435 |
| concepts[8].level | 1 |
| concepts[8].score | 0.49540412425994873 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[8].display_name | Demography |
| concepts[9].id | https://openalex.org/C84393581 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48726144433021545 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q82642 |
| concepts[9].display_name | Blood pressure |
| concepts[10].id | https://openalex.org/C207103383 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4394647181034088 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3930246 |
| concepts[10].display_name | Hazard ratio |
| concepts[11].id | https://openalex.org/C74909509 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37995991110801697 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q10387 |
| concepts[11].display_name | Gerontology |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3445005416870117 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C99454951 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21813541650772095 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q932068 |
| concepts[13].display_name | Environmental health |
| concepts[14].id | https://openalex.org/C134018914 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1420269012451172 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q162606 |
| concepts[14].display_name | Endocrinology |
| concepts[15].id | https://openalex.org/C44249647 |
| concepts[15].level | 2 |
| concepts[15].score | 0.13031110167503357 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[15].display_name | Confidence interval |
| concepts[16].id | https://openalex.org/C120665830 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[16].display_name | Optics |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C144024400 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[18].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.8450895547866821 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/type-2-diabetes |
| keywords[1].score | 0.6795268654823303 |
| keywords[1].display_name | Type 2 diabetes |
| keywords[2].id | https://openalex.org/keywords/body-mass-index |
| keywords[2].score | 0.6716647148132324 |
| keywords[2].display_name | Body mass index |
| keywords[3].id | https://openalex.org/keywords/diabetes-mellitus |
| keywords[3].score | 0.6172440648078918 |
| keywords[3].display_name | Diabetes mellitus |
| keywords[4].id | https://openalex.org/keywords/anthropometry |
| keywords[4].score | 0.5838017463684082 |
| keywords[4].display_name | Anthropometry |
| keywords[5].id | https://openalex.org/keywords/family-history |
| keywords[5].score | 0.5589496493339539 |
| keywords[5].display_name | Family history |
| keywords[6].id | https://openalex.org/keywords/incidence |
| keywords[6].score | 0.5376184582710266 |
| keywords[6].display_name | Incidence (geometry) |
| keywords[7].id | https://openalex.org/keywords/population |
| keywords[7].score | 0.5101516842842102 |
| keywords[7].display_name | Population |
| keywords[8].id | https://openalex.org/keywords/demography |
| keywords[8].score | 0.49540412425994873 |
| keywords[8].display_name | Demography |
| keywords[9].id | https://openalex.org/keywords/blood-pressure |
| keywords[9].score | 0.48726144433021545 |
| keywords[9].display_name | Blood pressure |
| keywords[10].id | https://openalex.org/keywords/hazard-ratio |
| keywords[10].score | 0.4394647181034088 |
| keywords[10].display_name | Hazard ratio |
| keywords[11].id | https://openalex.org/keywords/gerontology |
| keywords[11].score | 0.37995991110801697 |
| keywords[11].display_name | Gerontology |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.3445005416870117 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/environmental-health |
| keywords[13].score | 0.21813541650772095 |
| keywords[13].display_name | Environmental health |
| keywords[14].id | https://openalex.org/keywords/endocrinology |
| keywords[14].score | 0.1420269012451172 |
| keywords[14].display_name | Endocrinology |
| keywords[15].id | https://openalex.org/keywords/confidence-interval |
| keywords[15].score | 0.13031110167503357 |
| keywords[15].display_name | Confidence interval |
| language | en |
| locations[0].id | doi:10.1093/eurpub/ckaa165.549 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210220588 |
| locations[0].source.issn | 1101-1262, 1464-360X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1101-1262 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | European Journal of Public Health |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Journal of Public Health |
| locations[0].landing_page_url | https://doi.org/10.1093/eurpub/ckaa165.549 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5022418290 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8130-0229 |
| authorships[0].author.display_name | Diego Yacamán-Méndez |
| authorships[0].countries | SE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210152515 |
| authorships[0].affiliations[0].raw_affiliation_string | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I28166907 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[0].institutions[0].id | https://openalex.org/I4210152515 |
| authorships[0].institutions[0].ror | https://ror.org/04sx39q13 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I161593684, https://openalex.org/I2801711128, https://openalex.org/I4210152515 |
| authorships[0].institutions[0].country_code | SE |
| authorships[0].institutions[0].display_name | Centre for Palaeogenetics |
| authorships[0].institutions[1].id | https://openalex.org/I28166907 |
| authorships[0].institutions[1].ror | https://ror.org/056d84691 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I28166907 |
| authorships[0].institutions[1].country_code | SE |
| authorships[0].institutions[1].display_name | Karolinska Institutet |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | D Yacaman-Mendez |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[1].author.id | https://openalex.org/A5088228621 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Minchun Zhou |
| authorships[1].countries | SE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I28166907 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I4210152515 |
| authorships[1].affiliations[1].raw_affiliation_string | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden |
| authorships[1].institutions[0].id | https://openalex.org/I4210152515 |
| authorships[1].institutions[0].ror | https://ror.org/04sx39q13 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I161593684, https://openalex.org/I2801711128, https://openalex.org/I4210152515 |
| authorships[1].institutions[0].country_code | SE |
| authorships[1].institutions[0].display_name | Centre for Palaeogenetics |
| authorships[1].institutions[1].id | https://openalex.org/I28166907 |
| authorships[1].institutions[1].ror | https://ror.org/056d84691 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I28166907 |
| authorships[1].institutions[1].country_code | SE |
| authorships[1].institutions[1].display_name | Karolinska Institutet |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | M Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[2].author.id | https://openalex.org/A5037926121 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0704-5215 |
| authorships[2].author.display_name | Antônio Ponce de León |
| authorships[2].countries | SE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I28166907 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210152515 |
| authorships[2].affiliations[1].raw_affiliation_string | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden |
| authorships[2].institutions[0].id | https://openalex.org/I4210152515 |
| authorships[2].institutions[0].ror | https://ror.org/04sx39q13 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I161593684, https://openalex.org/I2801711128, https://openalex.org/I4210152515 |
| authorships[2].institutions[0].country_code | SE |
| authorships[2].institutions[0].display_name | Centre for Palaeogenetics |
| authorships[2].institutions[1].id | https://openalex.org/I28166907 |
| authorships[2].institutions[1].ror | https://ror.org/056d84691 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I28166907 |
| authorships[2].institutions[1].country_code | SE |
| authorships[2].institutions[1].display_name | Karolinska Institutet |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | A Ponce de leon |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[3].author.id | https://openalex.org/A5002670128 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5069-478X |
| authorships[3].author.display_name | David Ebbevi |
| authorships[3].countries | SE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210152515 |
| authorships[3].affiliations[0].raw_affiliation_string | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I28166907 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[3].institutions[0].id | https://openalex.org/I4210152515 |
| authorships[3].institutions[0].ror | https://ror.org/04sx39q13 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I161593684, https://openalex.org/I2801711128, https://openalex.org/I4210152515 |
| authorships[3].institutions[0].country_code | SE |
| authorships[3].institutions[0].display_name | Centre for Palaeogenetics |
| authorships[3].institutions[1].id | https://openalex.org/I28166907 |
| authorships[3].institutions[1].ror | https://ror.org/056d84691 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I28166907 |
| authorships[3].institutions[1].country_code | SE |
| authorships[3].institutions[1].display_name | Karolinska Institutet |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | D Ebbevi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[4].author.id | https://openalex.org/A5062697907 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5263-8063 |
| authorships[4].author.display_name | Anton Lager |
| authorships[4].countries | SE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28166907 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I4210152515 |
| authorships[4].affiliations[1].raw_affiliation_string | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden |
| authorships[4].institutions[0].id | https://openalex.org/I4210152515 |
| authorships[4].institutions[0].ror | https://ror.org/04sx39q13 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I161593684, https://openalex.org/I2801711128, https://openalex.org/I4210152515 |
| authorships[4].institutions[0].country_code | SE |
| authorships[4].institutions[0].display_name | Centre for Palaeogenetics |
| authorships[4].institutions[1].id | https://openalex.org/I28166907 |
| authorships[4].institutions[1].ror | https://ror.org/056d84691 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I28166907 |
| authorships[4].institutions[1].country_code | SE |
| authorships[4].institutions[1].display_name | Karolinska Institutet |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | A Lager |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden, Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Utility of data-driven clusters for the prevention of type 2 diabetes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10793 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2712 |
| primary_topic.subfield.display_name | Endocrinology, Diabetes and Metabolism |
| primary_topic.display_name | Diabetes Management and Education |
| related_works | https://openalex.org/W3120995422, https://openalex.org/W2159447326, https://openalex.org/W2497800675, https://openalex.org/W3114984321, https://openalex.org/W2997659300, https://openalex.org/W2119761735, https://openalex.org/W4299869453, https://openalex.org/W267534745, https://openalex.org/W38705506, https://openalex.org/W1593064325 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/eurpub/ckaa165.549 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210220588 |
| best_oa_location.source.issn | 1101-1262, 1464-360X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1101-1262 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | European Journal of Public Health |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Journal of Public Health |
| best_oa_location.landing_page_url | https://doi.org/10.1093/eurpub/ckaa165.549 |
| primary_location.id | doi:10.1093/eurpub/ckaa165.549 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210220588 |
| primary_location.source.issn | 1101-1262, 1464-360X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1101-1262 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | European Journal of Public Health |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/eurpub/article-pdf/30/Supplement_5/ckaa165.549/33818617/ckaa165.549.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Journal of Public Health |
| primary_location.landing_page_url | https://doi.org/10.1093/eurpub/ckaa165.549 |
| publication_date | 2020-09-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 3 |
| abstract_inverted_index.= | 213, 226, 236, 244, 252, 261 |
| abstract_inverted_index.A | 71, 171 |
| abstract_inverted_index.a | 57, 317 |
| abstract_inverted_index.(n | 212, 225, 235, 243, 251, 260 |
| abstract_inverted_index.10 | 99 |
| abstract_inverted_index.20 | 101 |
| abstract_inverted_index.35 | 84 |
| abstract_inverted_index.55 | 86 |
| abstract_inverted_index.At | 103 |
| abstract_inverted_index.HR | 228, 238, 246, 254, 263 |
| abstract_inverted_index.In | 215 |
| abstract_inverted_index.It | 334 |
| abstract_inverted_index.We | 40, 62, 120, 158, 193 |
| abstract_inverted_index.an | 7, 115 |
| abstract_inverted_index.as | 210 |
| abstract_inverted_index.at | 149 |
| abstract_inverted_index.be | 295 |
| abstract_inverted_index.by | 233 |
| abstract_inverted_index.in | 80, 184, 267 |
| abstract_inverted_index.is | 6, 18, 273, 335 |
| abstract_inverted_index.of | 10, 27, 45, 52, 126, 146, 163, 173, 180, 205, 281, 288, 326, 340, 345, 362 |
| abstract_inverted_index.on | 48, 285, 348 |
| abstract_inverted_index.to | 20, 32, 38, 42, 85, 151, 299, 337, 357 |
| abstract_inverted_index.up | 97 |
| abstract_inverted_index.47% | 222 |
| abstract_inverted_index.998 | 189 |
| abstract_inverted_index.Key | 309 |
| abstract_inverted_index.T2D | 33, 206, 224, 306, 314, 346 |
| abstract_inverted_index.all | 320 |
| abstract_inverted_index.and | 13, 82, 93, 95, 100, 114, 129, 133, 140, 144, 258, 329, 351, 354, 360 |
| abstract_inverted_index.but | 24 |
| abstract_inverted_index.can | 294 |
| abstract_inverted_index.for | 303, 313 |
| abstract_inverted_index.has | 34 |
| abstract_inverted_index.old | 88 |
| abstract_inverted_index.six | 195 |
| abstract_inverted_index.the | 66, 155, 161, 198, 201, 216, 219, 268, 279, 286, 301, 323 |
| abstract_inverted_index.two | 130 |
| abstract_inverted_index.was | 208 |
| abstract_inverted_index.way | 302 |
| abstract_inverted_index.who | 77 |
| abstract_inverted_index.1992 | 92 |
| abstract_inverted_index.1998 | 94 |
| abstract_inverted_index.2.0, | 264 |
| abstract_inverted_index.4.1, | 255 |
| abstract_inverted_index.5.2% | 259 |
| abstract_inverted_index.6.7, | 247 |
| abstract_inverted_index.7.6, | 239 |
| abstract_inverted_index.772, | 227 |
| abstract_inverted_index.9.5% | 250 |
| abstract_inverted_index.Data | 290 |
| abstract_inverted_index.T2D. | 192, 289, 363 |
| abstract_inverted_index.Type | 2 |
| abstract_inverted_index.age, | 122 |
| abstract_inverted_index.aged | 83 |
| abstract_inverted_index.body | 135 |
| abstract_inverted_index.born | 79 |
| abstract_inverted_index.care | 15 |
| abstract_inverted_index.data | 58, 64 |
| abstract_inverted_index.each | 104 |
| abstract_inverted_index.fits | 319 |
| abstract_inverted_index.from | 65 |
| abstract_inverted_index.help | 356 |
| abstract_inverted_index.made | 35 |
| abstract_inverted_index.mass | 136 |
| abstract_inverted_index.more | 304 |
| abstract_inverted_index.oral | 116 |
| abstract_inverted_index.pave | 300 |
| abstract_inverted_index.risk | 29, 54, 162, 283, 327, 344 |
| abstract_inverted_index.sex, | 123 |
| abstract_inverted_index.then | 159 |
| abstract_inverted_index.this | 185 |
| abstract_inverted_index.used | 63, 121, 209 |
| abstract_inverted_index.were | 78, 89, 148, 182 |
| abstract_inverted_index.with | 200, 218, 342 |
| abstract_inverted_index.(14%) | 190 |
| abstract_inverted_index.(T2D) | 5 |
| abstract_inverted_index.15.2% | 242 |
| abstract_inverted_index.17.1% | 234 |
| abstract_inverted_index.26.3, | 229 |
| abstract_inverted_index.7,173 | 174 |
| abstract_inverted_index.95%CI | 230, 240, 248, 256, 265 |
| abstract_inverted_index.Among | 187 |
| abstract_inverted_index.There | 272 |
| abstract_inverted_index.after | 98 |
| abstract_inverted_index.aimed | 41 |
| abstract_inverted_index.among | 332 |
| abstract_inverted_index.based | 47, 347 |
| abstract_inverted_index.blood | 142 |
| abstract_inverted_index.cause | 9 |
| abstract_inverted_index.could | 355 |
| abstract_inverted_index.group | 152, 199, 217 |
| abstract_inverted_index.hours | 131 |
| abstract_inverted_index.index | 137 |
| abstract_inverted_index.level | 50, 145 |
| abstract_inverted_index.risk, | 221 |
| abstract_inverted_index.test. | 119 |
| abstract_inverted_index.their | 330 |
| abstract_inverted_index.them, | 188 |
| abstract_inverted_index.tools | 298 |
| abstract_inverted_index.total | 172 |
| abstract_inverted_index.using | 56, 154, 167 |
| abstract_inverted_index.years | 87, 179 |
| abstract_inverted_index.(2.3%) | 207 |
| abstract_inverted_index.(BMI), | 138 |
| abstract_inverted_index.1,146, | 237 |
| abstract_inverted_index.1,157, | 262 |
| abstract_inverted_index.1,384, | 253 |
| abstract_inverted_index.1,453, | 245 |
| abstract_inverted_index.Sweden | 81 |
| abstract_inverted_index.driven | 59, 291 |
| abstract_inverted_index.effect | 280 |
| abstract_inverted_index.family | 124 |
| abstract_inverted_index.follow | 316 |
| abstract_inverted_index.global | 22 |
| abstract_inverted_index.health | 14 |
| abstract_inverted_index.lowest | 202 |
| abstract_inverted_index.people | 341 |
| abstract_inverted_index.person | 178 |
| abstract_inverted_index.simple | 349 |
| abstract_inverted_index.stable | 196 |
| abstract_inverted_index.study. | 74, 186 |
| abstract_inverted_index.useful | 296 |
| abstract_inverted_index.visit, | 105 |
| abstract_inverted_index.years. | 102 |
| abstract_inverted_index.1,265). | 214 |
| abstract_inverted_index.138,942 | 177 |
| abstract_inverted_index.Healthy | 75 |
| abstract_inverted_index.Methods | 61 |
| abstract_inverted_index.Results | 170 |
| abstract_inverted_index.between | 91, 165, 276 |
| abstract_inverted_index.counter | 21 |
| abstract_inverted_index.crucial | 19 |
| abstract_inverted_index.factors | 30, 55, 284, 328 |
| abstract_inverted_index.fasting | 128 |
| abstract_inverted_index.glucose | 117, 132 |
| abstract_inverted_index.groups. | 270 |
| abstract_inverted_index.highest | 220 |
| abstract_inverted_index.history | 125 |
| abstract_inverted_index.improve | 358 |
| abstract_inverted_index.leading | 31 |
| abstract_inverted_index.precise | 305 |
| abstract_inverted_index.trends, | 23 |
| abstract_inverted_index.usually | 315 |
| abstract_inverted_index.1.3-3.1) | 266 |
| abstract_inverted_index.2.8-6.2) | 257 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Diabetes | 68 |
| abstract_inverted_index.Program. | 70 |
| abstract_inverted_index.achieve. | 39 |
| abstract_inverted_index.answered | 107 |
| abstract_inverted_index.baseline | 150 |
| abstract_inverted_index.clinical | 350 |
| abstract_inverted_index.clusters | 44, 166 |
| abstract_inverted_index.diabetes | 4, 164 |
| abstract_inverted_index.examined | 160 |
| abstract_inverted_index.followed | 96, 232 |
| abstract_inverted_index.identify | 43, 338 |
| abstract_inverted_index.ignoring | 322 |
| abstract_inverted_index.included | 183 |
| abstract_inverted_index.insulin, | 134 |
| abstract_inverted_index.messages | 310 |
| abstract_inverted_index.one-size | 318 |
| abstract_inverted_index.possible | 336 |
| abstract_inverted_index.survival | 168 |
| abstract_inverted_index.systolic | 139 |
| abstract_inverted_index.4.5-9.8), | 249 |
| abstract_inverted_index.Stockholm | 67 |
| abstract_inverted_index.analysis. | 169 |
| abstract_inverted_index.approach, | 321 |
| abstract_inverted_index.approach. | 60 |
| abstract_inverted_index.clusters: | 197 |
| abstract_inverted_index.developed | 191, 223 |
| abstract_inverted_index.diabetes, | 127 |
| abstract_inverted_index.diastolic | 141 |
| abstract_inverted_index.different | 28, 53, 282, 343 |
| abstract_inverted_index.difficult | 37 |
| abstract_inverted_index.education | 147 |
| abstract_inverted_index.extensive | 108 |
| abstract_inverted_index.follow-up | 181 |
| abstract_inverted_index.important | 8, 274, 324 |
| abstract_inverted_index.incidence | 204, 287 |
| abstract_inverted_index.measures, | 111 |
| abstract_inverted_index.pressure, | 143 |
| abstract_inverted_index.programs. | 308 |
| abstract_inverted_index.recruited | 90 |
| abstract_inverted_index.reference | 211 |
| abstract_inverted_index.regarding | 278 |
| abstract_inverted_index.remaining | 269 |
| abstract_inverted_index.subgroups | 339 |
| abstract_inverted_index.tolerance | 118 |
| abstract_inverted_index.treatment | 361 |
| abstract_inverted_index.17.9-38.5) | 231 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Prevention | 17, 69, 311 |
| abstract_inverted_index.algorithm. | 157 |
| abstract_inverted_index.cumulative | 203 |
| abstract_inverted_index.disability | 12 |
| abstract_inverted_index.identified | 194 |
| abstract_inverted_index.individual | 25, 49 |
| abstract_inverted_index.laboratory | 112 |
| abstract_inverted_index.mortality, | 11 |
| abstract_inverted_index.prevention | 36, 359 |
| abstract_inverted_index.strategies | 293, 312 |
| abstract_inverted_index.5.1-11.22), | 241 |
| abstract_inverted_index.Conclusions | 271 |
| abstract_inverted_index.individuals | 46, 277 |
| abstract_inverted_index.k-prototype | 156 |
| abstract_inverted_index.prospective | 73 |
| abstract_inverted_index.variability | 26, 275, 325 |
| abstract_inverted_index.consequences | 331 |
| abstract_inverted_index.examinations | 113 |
| abstract_inverted_index.individuals. | 333 |
| abstract_inverted_index.intervention | 307 |
| abstract_inverted_index.participants | 76, 106, 153, 175 |
| abstract_inverted_index.phenotypical | 352 |
| abstract_inverted_index.representing | 176 |
| abstract_inverted_index.expenditures. | 16 |
| abstract_inverted_index.anthropometric | 110 |
| abstract_inverted_index.categorization | 292 |
| abstract_inverted_index.characteristics | 51 |
| abstract_inverted_index.epidemiological | 297 |
| abstract_inverted_index.questionnaires, | 109 |
| abstract_inverted_index.characteristics, | 353 |
| abstract_inverted_index.population-based, | 72 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.18858256 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |