Utility of quantitative analysis of 99mTc-GSA SPECT/CT in the evaluation of liver fibrosis: comparison with conventional assessment on planar images and its complementary diagnostic value with other liver function indices Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-3841222/v1
Objective To evaluate the potential value of quantitative Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl human serum albumin ( 99m Tc-GSA) SPECT in the assessment of liver fibrosis compared to a conventional index based on planar images (LHL15), and to assess its complementary value to other liver function indices such as fibrosis-4 (FIB-4) index and indocyanine green (ICG) clearance test (ICG-R15, ICG-K). Methods Seventy-eight consecutive patients with suspected chronic liver disease and hepatocellular carcinoma who underwent 99m Tc-GSA scintigraphy and other liver function tests including ICG test and FIB-4 index as the workup prior to hepatectomy were studied. 99m Tc-GSA image data were acquired with a SPECT/CT scanner (Discovery NM/CT 670) equipped with low-energy high-resolution collimator. Immediately after intravenous injection of median dose of 185 MBq of 99m Tc-GSA, dynamic imaging was performed for 20 min, followed by SPECT data acquisition for 6 min. LHL15, a conventional index, was measured from the planar images, and the liver uptake ration (LUR) was measured from the 99m Tc-GSA SPECT images. From the liver resection specimens, the degree of liver fibrosis was graded according to the Ludwig scale (F0-4). Results Significant differences in LUR, LHL15, ICG-R15, ICG-K, platelet count and FIB-4 index were found between the F0-3 and F4 liver fibrosis patient groups ( P < 0.05). Multivariate logistic regression analysis revealed that LUR and ICG-K were independent factors for identifying severe liver fibrosis (F4). Area under the curve of receiver operating curve analysis for the logistic regression model using LUR and ICG-K was 0.83. In the patient group with higher FIB-4 (≥ 3.16), the diagnostic performance of LUR for detecting severe liver fibrosis was significantly better than LHL15 (AUC: 0.83 vs. 0.75, P = 0.048). In the high FIB-4 index group, the sensitivity, specificity, positive predictive value, and negative predictive value for the identification of severe liver fibrosis were 88%, 85%, 88%, and 85%, respectively, when using the cutoff value of 41.2% for LUR. Conclusions LUR measured by quantitative analysis of 99m Tc-GSA SPECT reflects the severity of liver fibrosis more accurately than the conventional index from planar imaging. In patients with high FIB-4 index, LUR is a useful indicator to identify severe liver fibrosis with high diagnostic accuracy.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-3841222/v1
- https://www.researchsquare.com/article/rs-3841222/latest.pdf
- OA Status
- green
- References
- 28
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390823373
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390823373Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-3841222/v1Digital Object Identifier
- Title
-
Utility of quantitative analysis of 99mTc-GSA SPECT/CT in the evaluation of liver fibrosis: comparison with conventional assessment on planar images and its complementary diagnostic value with other liver function indicesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-12Full publication date if available
- Authors
-
Yoichi Kozaki, Yasutaka Ichikawa, Satoshi Nakamura, Tatsuhiro Kobayashi, Yoya Tomita, Motonori Nagata, Naohisa Kuriyama, Shugo Mizuno, Hajime SakumaList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-3841222/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-3841222/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-3841222/latest.pdfDirect OA link when available
- Concepts
-
Liver fibrosis, Nuclear medicine, Value (mathematics), Medicine, Planar, Field (mathematics), Radiology, Mathematics, Computer science, Statistics, Internal medicine, Fibrosis, Computer graphics (images), Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
28Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390823373 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-3841222/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-3841222/v1 |
| ids.openalex | https://openalex.org/W4390823373 |
| fwci | 0.0 |
| type | preprint |
| title | Utility of quantitative analysis of 99mTc-GSA SPECT/CT in the evaluation of liver fibrosis: comparison with conventional assessment on planar images and its complementary diagnostic value with other liver function indices |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10351 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Liver Disease Diagnosis and Treatment |
| topics[1].id | https://openalex.org/T10073 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2721 |
| topics[1].subfield.display_name | Hepatology |
| topics[1].display_name | Hepatocellular Carcinoma Treatment and Prognosis |
| topics[2].id | https://openalex.org/T10337 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2721 |
| topics[2].subfield.display_name | Hepatology |
| topics[2].display_name | Liver Disease and Transplantation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2994217296 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7078222036361694 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q147778 |
| concepts[0].display_name | Liver fibrosis |
| concepts[1].id | https://openalex.org/C2989005 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5682960152626038 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[1].display_name | Nuclear medicine |
| concepts[2].id | https://openalex.org/C2776291640 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5417253971099854 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[2].display_name | Value (mathematics) |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48167312145233154 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C134786449 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4801137447357178 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3391255 |
| concepts[4].display_name | Planar |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4131700396537781 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C126838900 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3522871136665344 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[6].display_name | Radiology |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3134719133377075 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3120589256286621 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.28399425745010376 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C126322002 |
| concepts[10].level | 1 |
| concepts[10].score | 0.21648705005645752 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[10].display_name | Internal medicine |
| concepts[11].id | https://openalex.org/C2780559512 |
| concepts[11].level | 2 |
| concepts[11].score | 0.214602530002594 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q605709 |
| concepts[11].display_name | Fibrosis |
| concepts[12].id | https://openalex.org/C121684516 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7600677 |
| concepts[12].display_name | Computer graphics (images) |
| concepts[13].id | https://openalex.org/C202444582 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[13].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/liver-fibrosis |
| keywords[0].score | 0.7078222036361694 |
| keywords[0].display_name | Liver fibrosis |
| keywords[1].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[1].score | 0.5682960152626038 |
| keywords[1].display_name | Nuclear medicine |
| keywords[2].id | https://openalex.org/keywords/value |
| keywords[2].score | 0.5417253971099854 |
| keywords[2].display_name | Value (mathematics) |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.48167312145233154 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/planar |
| keywords[4].score | 0.4801137447357178 |
| keywords[4].display_name | Planar |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.4131700396537781 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/radiology |
| keywords[6].score | 0.3522871136665344 |
| keywords[6].display_name | Radiology |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.3134719133377075 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.3120589256286621 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.28399425745010376 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/internal-medicine |
| keywords[10].score | 0.21648705005645752 |
| keywords[10].display_name | Internal medicine |
| keywords[11].id | https://openalex.org/keywords/fibrosis |
| keywords[11].score | 0.214602530002594 |
| keywords[11].display_name | Fibrosis |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-3841222/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-3841222/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-3841222/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093712794 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yoichi Kozaki |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[0].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210116542 |
| authorships[0].affiliations[1].raw_affiliation_string | Mie University Hospital Research |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I4210116542 |
| authorships[0].affiliations[2].raw_affiliation_string | Mie University Hospital Yasutaka Ichikawa |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I4210116542 |
| authorships[0].affiliations[3].raw_affiliation_string | Mie University Hospital Shugo Mizuno Mie University Hospital |
| authorships[0].affiliations[4].institution_ids | https://openalex.org/I4210116542 |
| authorships[0].affiliations[4].raw_affiliation_string | Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[0].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[0].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Mie University Hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yoichi Kozaki |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Mie University Hospital, Mie University Hospital Research, Mie University Hospital Shugo Mizuno Mie University Hospital, Mie University Hospital Yasutaka Ichikawa, Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[1].author.id | https://openalex.org/A5020443347 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6383-207X |
| authorships[1].author.display_name | Yasutaka Ichikawa |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[1].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[1].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[1].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Mie University Hospital |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yasutaka Ichikawa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Mie University Hospital |
| authorships[2].author.id | https://openalex.org/A5007066021 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9634-9332 |
| authorships[2].author.display_name | Satoshi Nakamura |
| authorships[2].countries | JP |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[2].affiliations[0].raw_affiliation_string | Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210116542 |
| authorships[2].affiliations[1].raw_affiliation_string | Mie University Hospital Yasutaka Ichikawa |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I4210116542 |
| authorships[2].affiliations[2].raw_affiliation_string | Mie University Hospital Research |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I4210116542 |
| authorships[2].affiliations[3].raw_affiliation_string | Mie University Hospital |
| authorships[2].affiliations[4].institution_ids | https://openalex.org/I4210116542 |
| authorships[2].affiliations[4].raw_affiliation_string | Mie University Hospital Shugo Mizuno Mie University Hospital |
| authorships[2].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[2].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[2].institutions[0].country_code | JP |
| authorships[2].institutions[0].display_name | Mie University Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Satoshi Nakamura |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Mie University Hospital, Mie University Hospital Research, Mie University Hospital Shugo Mizuno Mie University Hospital, Mie University Hospital Yasutaka Ichikawa, Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[3].author.id | https://openalex.org/A5046931425 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tatsuhiro Kobayashi |
| authorships[3].countries | JP |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[3].affiliations[0].raw_affiliation_string | Mie University Hospital Research |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I4210116542 |
| authorships[3].affiliations[1].raw_affiliation_string | Mie University Hospital Yasutaka Ichikawa |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210116542 |
| authorships[3].affiliations[2].raw_affiliation_string | Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[3].affiliations[3].institution_ids | https://openalex.org/I4210116542 |
| authorships[3].affiliations[3].raw_affiliation_string | Mie University Hospital Shugo Mizuno Mie University Hospital |
| authorships[3].affiliations[4].institution_ids | https://openalex.org/I4210116542 |
| authorships[3].affiliations[4].raw_affiliation_string | Mie University Hospital |
| authorships[3].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[3].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[3].institutions[0].country_code | JP |
| authorships[3].institutions[0].display_name | Mie University Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tatsuhiro Kobayashi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Mie University Hospital, Mie University Hospital Research, Mie University Hospital Shugo Mizuno Mie University Hospital, Mie University Hospital Yasutaka Ichikawa, Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[4].author.id | https://openalex.org/A5070059092 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yoya Tomita |
| authorships[4].countries | JP |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[4].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[4].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[4].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[4].institutions[0].country_code | JP |
| authorships[4].institutions[0].display_name | Mie University Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yoya Tomita |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Mie University Hospital |
| authorships[5].author.id | https://openalex.org/A5013941836 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7162-8469 |
| authorships[5].author.display_name | Motonori Nagata |
| authorships[5].countries | JP |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[5].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[5].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[5].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[5].institutions[0].country_code | JP |
| authorships[5].institutions[0].display_name | Mie University Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Motonori Nagata |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Mie University Hospital |
| authorships[6].author.id | https://openalex.org/A5015214616 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9668-0500 |
| authorships[6].author.display_name | Naohisa Kuriyama |
| authorships[6].countries | JP |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[6].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210116542 |
| authorships[6].affiliations[1].raw_affiliation_string | Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I4210116542 |
| authorships[6].affiliations[2].raw_affiliation_string | Mie University Hospital Shugo Mizuno Mie University Hospital |
| authorships[6].affiliations[3].institution_ids | https://openalex.org/I4210116542 |
| authorships[6].affiliations[3].raw_affiliation_string | Mie University Hospital Research |
| authorships[6].affiliations[4].institution_ids | https://openalex.org/I4210116542 |
| authorships[6].affiliations[4].raw_affiliation_string | Mie University Hospital Yasutaka Ichikawa |
| authorships[6].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[6].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | Mie University Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Naohisa Kuriyama |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Mie University Hospital, Mie University Hospital Research, Mie University Hospital Shugo Mizuno Mie University Hospital, Mie University Hospital Yasutaka Ichikawa, Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[7].author.id | https://openalex.org/A5067861967 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2253-544X |
| authorships[7].author.display_name | Shugo Mizuno |
| authorships[7].countries | JP |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[7].affiliations[0].raw_affiliation_string | Mie University Hospital |
| authorships[7].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[7].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[7].institutions[0].country_code | JP |
| authorships[7].institutions[0].display_name | Mie University Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Shugo Mizuno |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Mie University Hospital |
| authorships[8].author.id | https://openalex.org/A5071689094 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-3547-2940 |
| authorships[8].author.display_name | Hajime Sakuma |
| authorships[8].countries | JP |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I4210116542 |
| authorships[8].affiliations[0].raw_affiliation_string | Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I4210116542 |
| authorships[8].affiliations[1].raw_affiliation_string | Mie University Hospital |
| authorships[8].affiliations[2].institution_ids | https://openalex.org/I4210116542 |
| authorships[8].affiliations[2].raw_affiliation_string | Mie University Hospital Shugo Mizuno Mie University Hospital |
| authorships[8].affiliations[3].institution_ids | https://openalex.org/I4210116542 |
| authorships[8].affiliations[3].raw_affiliation_string | Mie University Hospital Research |
| authorships[8].affiliations[4].institution_ids | https://openalex.org/I4210116542 |
| authorships[8].affiliations[4].raw_affiliation_string | Mie University Hospital Yasutaka Ichikawa |
| authorships[8].institutions[0].id | https://openalex.org/I4210116542 |
| authorships[8].institutions[0].ror | https://ror.org/01v9g9c07 |
| authorships[8].institutions[0].type | healthcare |
| authorships[8].institutions[0].lineage | https://openalex.org/I4210116542 |
| authorships[8].institutions[0].country_code | JP |
| authorships[8].institutions[0].display_name | Mie University Hospital |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Hajime Sakuma |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Mie University Hospital, Mie University Hospital Research, Mie University Hospital Shugo Mizuno Mie University Hospital, Mie University Hospital Yasutaka Ichikawa, Mie University Hospital Yoya Tomita Mie University Hospital Motonori Nagata Mie University Hospital |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-3841222/latest.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Utility of quantitative analysis of 99mTc-GSA SPECT/CT in the evaluation of liver fibrosis: comparison with conventional assessment on planar images and its complementary diagnostic value with other liver function indices |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10351 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Liver Disease Diagnosis and Treatment |
| related_works | https://openalex.org/W2010009304, https://openalex.org/W3021694725, https://openalex.org/W1996851061, https://openalex.org/W2940695648, https://openalex.org/W1973684381, https://openalex.org/W2096304864, https://openalex.org/W4251403274, https://openalex.org/W2121107213, https://openalex.org/W2038492089, https://openalex.org/W2089028859 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-3841222/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-3841222/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3841222/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-3841222/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-3841222/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-3841222/v1 |
| publication_date | 2024-01-12 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3002179283, https://openalex.org/W1966709938, https://openalex.org/W2016265898, https://openalex.org/W2057320475, https://openalex.org/W2069628571, https://openalex.org/W2002163127, https://openalex.org/W2134182464, https://openalex.org/W2088337379, https://openalex.org/W4386273953, https://openalex.org/W2135201074, https://openalex.org/W3174905293, https://openalex.org/W4200536452, https://openalex.org/W4200481506, https://openalex.org/W3040545282, https://openalex.org/W3023906747, https://openalex.org/W2042325755, https://openalex.org/W2080005512, https://openalex.org/W2104585517, https://openalex.org/W2072084537, https://openalex.org/W3049421820, https://openalex.org/W2762253600, https://openalex.org/W2808238521, https://openalex.org/W4321180792, https://openalex.org/W1999421854, https://openalex.org/W1615687143, https://openalex.org/W3130694190, https://openalex.org/W4300816876, https://openalex.org/W1993600266 |
| referenced_works_count | 28 |
| abstract_inverted_index.( | 14, 206 |
| abstract_inverted_index.6 | 138 |
| abstract_inverted_index.= | 277 |
| abstract_inverted_index.P | 207, 276 |
| abstract_inverted_index.a | 26, 101, 141, 351 |
| abstract_inverted_index.20 | 130 |
| abstract_inverted_index.F4 | 201 |
| abstract_inverted_index.In | 248, 279, 343 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.as | 46, 86 |
| abstract_inverted_index.by | 133, 321 |
| abstract_inverted_index.in | 18, 185 |
| abstract_inverted_index.is | 350 |
| abstract_inverted_index.of | 7, 21, 116, 119, 122, 171, 232, 260, 298, 314, 324, 331 |
| abstract_inverted_index.on | 30 |
| abstract_inverted_index.to | 25, 35, 40, 90, 177, 354 |
| abstract_inverted_index.185 | 120 |
| abstract_inverted_index.99m | 15, 72, 94, 123, 160, 325 |
| abstract_inverted_index.ICG | 81 |
| abstract_inverted_index.LUR | 216, 243, 261, 319, 349 |
| abstract_inverted_index.MBq | 121 |
| abstract_inverted_index.and | 34, 50, 67, 75, 83, 150, 192, 200, 217, 244, 291, 306 |
| abstract_inverted_index.for | 129, 137, 222, 237, 262, 295, 316 |
| abstract_inverted_index.its | 37 |
| abstract_inverted_index.the | 4, 19, 87, 147, 151, 159, 165, 169, 178, 198, 230, 238, 249, 257, 280, 285, 296, 311, 329, 337 |
| abstract_inverted_index.vs. | 274 |
| abstract_inverted_index.was | 127, 144, 156, 174, 246, 267 |
| abstract_inverted_index.who | 70 |
| abstract_inverted_index.< | 208 |
| abstract_inverted_index.(≥ | 255 |
| abstract_inverted_index.0.83 | 273 |
| abstract_inverted_index.670) | 106 |
| abstract_inverted_index.85%, | 304, 307 |
| abstract_inverted_index.88%, | 303, 305 |
| abstract_inverted_index.Area | 228 |
| abstract_inverted_index.F0-3 | 199 |
| abstract_inverted_index.From | 164 |
| abstract_inverted_index.LUR, | 186 |
| abstract_inverted_index.LUR. | 317 |
| abstract_inverted_index.data | 97, 135 |
| abstract_inverted_index.dose | 118 |
| abstract_inverted_index.from | 146, 158, 340 |
| abstract_inverted_index.high | 281, 346, 360 |
| abstract_inverted_index.min, | 131 |
| abstract_inverted_index.min. | 139 |
| abstract_inverted_index.more | 334 |
| abstract_inverted_index.such | 45 |
| abstract_inverted_index.test | 55, 82 |
| abstract_inverted_index.than | 270, 336 |
| abstract_inverted_index.that | 215 |
| abstract_inverted_index.were | 92, 98, 195, 219, 302 |
| abstract_inverted_index.when | 309 |
| abstract_inverted_index.with | 62, 100, 108, 252, 345, 359 |
| abstract_inverted_index.(AUC: | 272 |
| abstract_inverted_index.(F4). | 227 |
| abstract_inverted_index.(ICG) | 53 |
| abstract_inverted_index.(LUR) | 155 |
| abstract_inverted_index.0.75, | 275 |
| abstract_inverted_index.0.83. | 247 |
| abstract_inverted_index.41.2% | 315 |
| abstract_inverted_index.FIB-4 | 84, 193, 254, 282, 347 |
| abstract_inverted_index.ICG-K | 218, 245 |
| abstract_inverted_index.LHL15 | 271 |
| abstract_inverted_index.NM/CT | 105 |
| abstract_inverted_index.SPECT | 17, 134, 162, 327 |
| abstract_inverted_index.after | 113 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.count | 191 |
| abstract_inverted_index.curve | 231, 235 |
| abstract_inverted_index.found | 196 |
| abstract_inverted_index.green | 52 |
| abstract_inverted_index.group | 251 |
| abstract_inverted_index.human | 11 |
| abstract_inverted_index.image | 96 |
| abstract_inverted_index.index | 28, 49, 85, 194, 283, 339 |
| abstract_inverted_index.liver | 22, 42, 65, 77, 152, 166, 172, 202, 225, 265, 300, 332, 357 |
| abstract_inverted_index.model | 241 |
| abstract_inverted_index.other | 41, 76 |
| abstract_inverted_index.prior | 89 |
| abstract_inverted_index.scale | 180 |
| abstract_inverted_index.serum | 12 |
| abstract_inverted_index.tests | 79 |
| abstract_inverted_index.under | 229 |
| abstract_inverted_index.using | 242, 310 |
| abstract_inverted_index.value | 6, 39, 294, 313 |
| abstract_inverted_index.0.05). | 209 |
| abstract_inverted_index.3.16), | 256 |
| abstract_inverted_index.ICG-K, | 189 |
| abstract_inverted_index.LHL15, | 140, 187 |
| abstract_inverted_index.Ludwig | 179 |
| abstract_inverted_index.Tc-GSA | 73, 95, 161, 326 |
| abstract_inverted_index.assess | 36 |
| abstract_inverted_index.better | 269 |
| abstract_inverted_index.cutoff | 312 |
| abstract_inverted_index.degree | 170 |
| abstract_inverted_index.graded | 175 |
| abstract_inverted_index.group, | 284 |
| abstract_inverted_index.groups | 205 |
| abstract_inverted_index.higher | 253 |
| abstract_inverted_index.images | 32 |
| abstract_inverted_index.index, | 143, 348 |
| abstract_inverted_index.median | 117 |
| abstract_inverted_index.planar | 31, 148, 341 |
| abstract_inverted_index.ration | 154 |
| abstract_inverted_index.severe | 224, 264, 299, 356 |
| abstract_inverted_index.uptake | 153 |
| abstract_inverted_index.useful | 352 |
| abstract_inverted_index.value, | 290 |
| abstract_inverted_index.workup | 88 |
| abstract_inverted_index.(F0-4). | 181 |
| abstract_inverted_index.(FIB-4) | 48 |
| abstract_inverted_index.0.048). | 278 |
| abstract_inverted_index.ICG-K). | 57 |
| abstract_inverted_index.Methods | 58 |
| abstract_inverted_index.Results | 182 |
| abstract_inverted_index.Tc-GSA) | 16 |
| abstract_inverted_index.Tc-GSA, | 124 |
| abstract_inverted_index.albumin | 13 |
| abstract_inverted_index.between | 197 |
| abstract_inverted_index.chronic | 64 |
| abstract_inverted_index.disease | 66 |
| abstract_inverted_index.dynamic | 125 |
| abstract_inverted_index.factors | 221 |
| abstract_inverted_index.images, | 149 |
| abstract_inverted_index.images. | 163 |
| abstract_inverted_index.imaging | 126 |
| abstract_inverted_index.indices | 44 |
| abstract_inverted_index.patient | 204, 250 |
| abstract_inverted_index.scanner | 103 |
| abstract_inverted_index.(LHL15), | 33 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ICG-R15, | 188 |
| abstract_inverted_index.SPECT/CT | 102 |
| abstract_inverted_index.acquired | 99 |
| abstract_inverted_index.analysis | 213, 236, 323 |
| abstract_inverted_index.compared | 24 |
| abstract_inverted_index.equipped | 107 |
| abstract_inverted_index.evaluate | 3 |
| abstract_inverted_index.fibrosis | 23, 173, 203, 226, 266, 301, 333, 358 |
| abstract_inverted_index.followed | 132 |
| abstract_inverted_index.function | 43, 78 |
| abstract_inverted_index.identify | 355 |
| abstract_inverted_index.imaging. | 342 |
| abstract_inverted_index.logistic | 211, 239 |
| abstract_inverted_index.measured | 145, 157, 320 |
| abstract_inverted_index.negative | 292 |
| abstract_inverted_index.patients | 61, 344 |
| abstract_inverted_index.platelet | 190 |
| abstract_inverted_index.positive | 288 |
| abstract_inverted_index.receiver | 233 |
| abstract_inverted_index.reflects | 328 |
| abstract_inverted_index.revealed | 214 |
| abstract_inverted_index.severity | 330 |
| abstract_inverted_index.studied. | 93 |
| abstract_inverted_index.(ICG-R15, | 56 |
| abstract_inverted_index.Objective | 1 |
| abstract_inverted_index.according | 176 |
| abstract_inverted_index.accuracy. | 362 |
| abstract_inverted_index.carcinoma | 69 |
| abstract_inverted_index.clearance | 54 |
| abstract_inverted_index.detecting | 263 |
| abstract_inverted_index.including | 80 |
| abstract_inverted_index.indicator | 353 |
| abstract_inverted_index.injection | 115 |
| abstract_inverted_index.operating | 234 |
| abstract_inverted_index.performed | 128 |
| abstract_inverted_index.potential | 5 |
| abstract_inverted_index.resection | 167 |
| abstract_inverted_index.suspected | 63 |
| abstract_inverted_index.underwent | 71 |
| abstract_inverted_index.(Discovery | 104 |
| abstract_inverted_index.accurately | 335 |
| abstract_inverted_index.assessment | 20 |
| abstract_inverted_index.diagnostic | 258, 361 |
| abstract_inverted_index.fibrosis-4 | 47 |
| abstract_inverted_index.low-energy | 109 |
| abstract_inverted_index.predictive | 289, 293 |
| abstract_inverted_index.regression | 212, 240 |
| abstract_inverted_index.specimens, | 168 |
| abstract_inverted_index.Conclusions | 318 |
| abstract_inverted_index.Immediately | 112 |
| abstract_inverted_index.Significant | 183 |
| abstract_inverted_index.acquisition | 136 |
| abstract_inverted_index.collimator. | 111 |
| abstract_inverted_index.consecutive | 60 |
| abstract_inverted_index.differences | 184 |
| abstract_inverted_index.hepatectomy | 91 |
| abstract_inverted_index.identifying | 223 |
| abstract_inverted_index.independent | 220 |
| abstract_inverted_index.indocyanine | 51 |
| abstract_inverted_index.intravenous | 114 |
| abstract_inverted_index.performance | 259 |
| abstract_inverted_index.Multivariate | 210 |
| abstract_inverted_index.conventional | 27, 142, 338 |
| abstract_inverted_index.quantitative | 8, 322 |
| abstract_inverted_index.scintigraphy | 74 |
| abstract_inverted_index.sensitivity, | 286 |
| abstract_inverted_index.specificity, | 287 |
| abstract_inverted_index.Seventy-eight | 59 |
| abstract_inverted_index.complementary | 38 |
| abstract_inverted_index.respectively, | 308 |
| abstract_inverted_index.significantly | 268 |
| abstract_inverted_index.hepatocellular | 68 |
| abstract_inverted_index.identification | 297 |
| abstract_inverted_index.acid-galactosyl | 10 |
| abstract_inverted_index.high-resolution | 110 |
| abstract_inverted_index.Tc-99m-diethylenetriamine-penta-acetic | 9 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.00717117 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |