Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.06913
Refusal-Aware Instruction Tuning (RAIT) enables Large Language Models (LLMs) to refuse to answer unknown questions. By modifying responses of unknown questions in the training data to refusal responses such as "I don't know", RAIT enhances the reliability of LLMs and reduces their hallucination. Generally, RAIT modifies training samples based on the correctness of the initial LLM's response. However, this crude approach can cause LLMs to excessively refuse answering questions they could have correctly answered, the problem we call over-refusal. In this paper, we explore two primary causes of over-refusal: Static conflict occurs when similar samples within the LLM's feature space receive differing supervision signals (original vs. modified "I don't know"). Dynamic conflict arises as the LLM's evolving knowledge during SFT enables it to answer previously unanswerable questions, but the now-answerable training samples still retain the original "I don't know" supervision signals from the initial LLM state, leading to inconsistencies. These conflicts cause the trained LLM to misclassify known questions as unknown, resulting in over-refusal. To address this issue, we introduce Certainty Represented Knowledge Flow for Refusal-Aware Instructions Tuning (CRaFT). CRaFT centers on two main contributions: First, we additionally incorporate response certainty to selectively filter and modify data, reducing static conflicts. Second, we implement preliminary rehearsal training to characterize changes in the LLM's knowledge state, which helps mitigate dynamic conflicts during the fine-tuning process. We conducted extensive experiments on open-ended question answering and multiple-choice question task. Experiment results show that CRaFT can improve LLM's overall performance during the RAIT process. Code and data will be released at https://github.com/opendatalab/CRaFT .
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.06913
- https://arxiv.org/pdf/2410.06913
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403345587
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403345587Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.06913Digital Object Identifier
- Title
-
Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction TuningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-09Full publication date if available
- Authors
-
Rupeng Zhu, Zhiyuan Ma, Jiang Wu, Junyuan Gao, Jiaqi Wang, Dahua Lin, Changming HeList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.06913Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.06913Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.06913Direct OA link when available
- Concepts
-
Certainty, Flow (mathematics), Knowledge flow, Computer science, Psychology, Mathematics, Epistemology, Knowledge management, Philosophy, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403345587 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.06913 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.06913 |
| ids.openalex | https://openalex.org/W4403345587 |
| fwci | |
| type | preprint |
| title | Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11902 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Intelligent Tutoring Systems and Adaptive Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7493553 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8457234501838684 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1520777 |
| concepts[0].display_name | Certainty |
| concepts[1].id | https://openalex.org/C38349280 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6584524512290955 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1434290 |
| concepts[1].display_name | Flow (mathematics) |
| concepts[2].id | https://openalex.org/C2984563274 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5549074411392212 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2586354 |
| concepts[2].display_name | Knowledge flow |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.49537646770477295 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C15744967 |
| concepts[4].level | 0 |
| concepts[4].score | 0.32246100902557373 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[4].display_name | Psychology |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.18934890627861023 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C111472728 |
| concepts[6].level | 1 |
| concepts[6].score | 0.1652807593345642 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[6].display_name | Epistemology |
| concepts[7].id | https://openalex.org/C56739046 |
| concepts[7].level | 1 |
| concepts[7].score | 0.16269144415855408 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192060 |
| concepts[7].display_name | Knowledge management |
| concepts[8].id | https://openalex.org/C138885662 |
| concepts[8].level | 0 |
| concepts[8].score | 0.08653748035430908 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[8].display_name | Philosophy |
| concepts[9].id | https://openalex.org/C2524010 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[9].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/certainty |
| keywords[0].score | 0.8457234501838684 |
| keywords[0].display_name | Certainty |
| keywords[1].id | https://openalex.org/keywords/flow |
| keywords[1].score | 0.6584524512290955 |
| keywords[1].display_name | Flow (mathematics) |
| keywords[2].id | https://openalex.org/keywords/knowledge-flow |
| keywords[2].score | 0.5549074411392212 |
| keywords[2].display_name | Knowledge flow |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.49537646770477295 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/psychology |
| keywords[4].score | 0.32246100902557373 |
| keywords[4].display_name | Psychology |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.18934890627861023 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/epistemology |
| keywords[6].score | 0.1652807593345642 |
| keywords[6].display_name | Epistemology |
| keywords[7].id | https://openalex.org/keywords/knowledge-management |
| keywords[7].score | 0.16269144415855408 |
| keywords[7].display_name | Knowledge management |
| keywords[8].id | https://openalex.org/keywords/philosophy |
| keywords[8].score | 0.08653748035430908 |
| keywords[8].display_name | Philosophy |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.06913 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.06913 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.06913 |
| locations[1].id | doi:10.48550/arxiv.2410.06913 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.06913 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5030676323 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6321-2663 |
| authorships[0].author.display_name | Rupeng Zhu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhu, Runchuan |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5081053737 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3270-6844 |
| authorships[1].author.display_name | Zhiyuan Ma |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ma, Zhipeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100949430 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jiang Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Wu, Jiang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5111363114 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Junyuan Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Junyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100365347 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8841-0124 |
| authorships[4].author.display_name | Jiaqi Wang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Wang, Jiaqi |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5010087030 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8865-7896 |
| authorships[5].author.display_name | Dahua Lin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Lin, Dahua |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5075805415 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Changming He |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | He, Conghui |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.06913 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Utilize the Flow before Stepping into the Same River Twice: Certainty Represented Knowledge Flow for Refusal-Aware Instruction Tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11902 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Intelligent Tutoring Systems and Adaptive Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2418227039, https://openalex.org/W2387971622, https://openalex.org/W1559214593, https://openalex.org/W2141935323, https://openalex.org/W2418299857, https://openalex.org/W2466655349, https://openalex.org/W2348150032, https://openalex.org/W2354806206 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.06913 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.06913 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.06913 |
| primary_location.id | pmh:oai:arXiv.org:2410.06913 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.06913 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.06913 |
| publication_date | 2024-10-09 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 257 |
| abstract_inverted_index."I | 30, 107, 136 |
| abstract_inverted_index.By | 15 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.To | 164 |
| abstract_inverted_index.We | 223 |
| abstract_inverted_index.as | 29, 113, 159 |
| abstract_inverted_index.at | 255 |
| abstract_inverted_index.be | 253 |
| abstract_inverted_index.in | 21, 162, 209 |
| abstract_inverted_index.it | 121 |
| abstract_inverted_index.of | 18, 37, 52, 87 |
| abstract_inverted_index.on | 49, 181, 227 |
| abstract_inverted_index.to | 9, 11, 25, 64, 122, 147, 155, 191, 206 |
| abstract_inverted_index.we | 76, 82, 168, 186, 201 |
| abstract_inverted_index.LLM | 144, 154 |
| abstract_inverted_index.SFT | 119 |
| abstract_inverted_index.and | 39, 194, 231, 250 |
| abstract_inverted_index.but | 127 |
| abstract_inverted_index.can | 61, 240 |
| abstract_inverted_index.for | 174 |
| abstract_inverted_index.the | 22, 35, 50, 53, 74, 96, 114, 128, 134, 142, 152, 210, 220, 246 |
| abstract_inverted_index.two | 84, 182 |
| abstract_inverted_index.vs. | 105 |
| abstract_inverted_index.Code | 249 |
| abstract_inverted_index.Flow | 173 |
| abstract_inverted_index.LLMs | 38, 63 |
| abstract_inverted_index.RAIT | 33, 44, 247 |
| abstract_inverted_index.call | 77 |
| abstract_inverted_index.data | 24, 251 |
| abstract_inverted_index.from | 141 |
| abstract_inverted_index.have | 71 |
| abstract_inverted_index.main | 183 |
| abstract_inverted_index.show | 237 |
| abstract_inverted_index.such | 28 |
| abstract_inverted_index.that | 238 |
| abstract_inverted_index.they | 69 |
| abstract_inverted_index.this | 58, 80, 166 |
| abstract_inverted_index.when | 92 |
| abstract_inverted_index.will | 252 |
| abstract_inverted_index.CRaFT | 179, 239 |
| abstract_inverted_index.LLM's | 55, 97, 115, 211, 242 |
| abstract_inverted_index.Large | 5 |
| abstract_inverted_index.These | 149 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.cause | 62, 151 |
| abstract_inverted_index.could | 70 |
| abstract_inverted_index.crude | 59 |
| abstract_inverted_index.data, | 196 |
| abstract_inverted_index.don't | 31, 108, 137 |
| abstract_inverted_index.helps | 215 |
| abstract_inverted_index.know" | 138 |
| abstract_inverted_index.known | 157 |
| abstract_inverted_index.space | 99 |
| abstract_inverted_index.still | 132 |
| abstract_inverted_index.task. | 234 |
| abstract_inverted_index.their | 41 |
| abstract_inverted_index.which | 214 |
| abstract_inverted_index.(LLMs) | 8 |
| abstract_inverted_index.(RAIT) | 3 |
| abstract_inverted_index.First, | 185 |
| abstract_inverted_index.Models | 7 |
| abstract_inverted_index.Static | 89 |
| abstract_inverted_index.Tuning | 2, 177 |
| abstract_inverted_index.answer | 12, 123 |
| abstract_inverted_index.arises | 112 |
| abstract_inverted_index.causes | 86 |
| abstract_inverted_index.during | 118, 219, 245 |
| abstract_inverted_index.filter | 193 |
| abstract_inverted_index.issue, | 167 |
| abstract_inverted_index.know", | 32 |
| abstract_inverted_index.modify | 195 |
| abstract_inverted_index.occurs | 91 |
| abstract_inverted_index.paper, | 81 |
| abstract_inverted_index.refuse | 10, 66 |
| abstract_inverted_index.retain | 133 |
| abstract_inverted_index.state, | 145, 213 |
| abstract_inverted_index.static | 198 |
| abstract_inverted_index.within | 95 |
| abstract_inverted_index.Dynamic | 110 |
| abstract_inverted_index.Second, | 200 |
| abstract_inverted_index.address | 165 |
| abstract_inverted_index.centers | 180 |
| abstract_inverted_index.changes | 208 |
| abstract_inverted_index.dynamic | 217 |
| abstract_inverted_index.enables | 4, 120 |
| abstract_inverted_index.explore | 83 |
| abstract_inverted_index.feature | 98 |
| abstract_inverted_index.improve | 241 |
| abstract_inverted_index.initial | 54, 143 |
| abstract_inverted_index.know"). | 109 |
| abstract_inverted_index.leading | 146 |
| abstract_inverted_index.overall | 243 |
| abstract_inverted_index.primary | 85 |
| abstract_inverted_index.problem | 75 |
| abstract_inverted_index.receive | 100 |
| abstract_inverted_index.reduces | 40 |
| abstract_inverted_index.refusal | 26 |
| abstract_inverted_index.results | 236 |
| abstract_inverted_index.samples | 47, 94, 131 |
| abstract_inverted_index.signals | 103, 140 |
| abstract_inverted_index.similar | 93 |
| abstract_inverted_index.trained | 153 |
| abstract_inverted_index.unknown | 13, 19 |
| abstract_inverted_index.(CRaFT). | 178 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.Language | 6 |
| abstract_inverted_index.approach | 60 |
| abstract_inverted_index.conflict | 90, 111 |
| abstract_inverted_index.enhances | 34 |
| abstract_inverted_index.evolving | 116 |
| abstract_inverted_index.mitigate | 216 |
| abstract_inverted_index.modified | 106 |
| abstract_inverted_index.modifies | 45 |
| abstract_inverted_index.original | 135 |
| abstract_inverted_index.process. | 222, 248 |
| abstract_inverted_index.question | 229, 233 |
| abstract_inverted_index.reducing | 197 |
| abstract_inverted_index.released | 254 |
| abstract_inverted_index.response | 189 |
| abstract_inverted_index.training | 23, 46, 130, 205 |
| abstract_inverted_index.unknown, | 160 |
| abstract_inverted_index.(original | 104 |
| abstract_inverted_index.Certainty | 170 |
| abstract_inverted_index.Knowledge | 172 |
| abstract_inverted_index.answered, | 73 |
| abstract_inverted_index.answering | 67, 230 |
| abstract_inverted_index.certainty | 190 |
| abstract_inverted_index.conducted | 224 |
| abstract_inverted_index.conflicts | 150, 218 |
| abstract_inverted_index.correctly | 72 |
| abstract_inverted_index.differing | 101 |
| abstract_inverted_index.extensive | 225 |
| abstract_inverted_index.implement | 202 |
| abstract_inverted_index.introduce | 169 |
| abstract_inverted_index.knowledge | 117, 212 |
| abstract_inverted_index.modifying | 16 |
| abstract_inverted_index.questions | 20, 68, 158 |
| abstract_inverted_index.rehearsal | 204 |
| abstract_inverted_index.response. | 56 |
| abstract_inverted_index.responses | 17, 27 |
| abstract_inverted_index.resulting | 161 |
| abstract_inverted_index.Experiment | 235 |
| abstract_inverted_index.Generally, | 43 |
| abstract_inverted_index.conflicts. | 199 |
| abstract_inverted_index.open-ended | 228 |
| abstract_inverted_index.previously | 124 |
| abstract_inverted_index.questions, | 126 |
| abstract_inverted_index.questions. | 14 |
| abstract_inverted_index.Instruction | 1 |
| abstract_inverted_index.Represented | 171 |
| abstract_inverted_index.correctness | 51 |
| abstract_inverted_index.excessively | 65 |
| abstract_inverted_index.experiments | 226 |
| abstract_inverted_index.fine-tuning | 221 |
| abstract_inverted_index.incorporate | 188 |
| abstract_inverted_index.misclassify | 156 |
| abstract_inverted_index.performance | 244 |
| abstract_inverted_index.preliminary | 203 |
| abstract_inverted_index.reliability | 36 |
| abstract_inverted_index.selectively | 192 |
| abstract_inverted_index.supervision | 102, 139 |
| abstract_inverted_index.Instructions | 176 |
| abstract_inverted_index.additionally | 187 |
| abstract_inverted_index.characterize | 207 |
| abstract_inverted_index.unanswerable | 125 |
| abstract_inverted_index.Refusal-Aware | 0, 175 |
| abstract_inverted_index.over-refusal. | 78, 163 |
| abstract_inverted_index.over-refusal: | 88 |
| abstract_inverted_index.contributions: | 184 |
| abstract_inverted_index.hallucination. | 42 |
| abstract_inverted_index.now-answerable | 129 |
| abstract_inverted_index.multiple-choice | 232 |
| abstract_inverted_index.inconsistencies. | 148 |
| abstract_inverted_index.https://github.com/opendatalab/CRaFT | 256 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile |