V3C1 Dataset Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1145/3323873.3325051
In this work we analyze content statistics of the V3C1 dataset, which is the first partition of theVimeo Creative Commons Collection (V3C). The dataset has been designed to represent true web videos in the wild, with good visual quality and diverse content characteristics, and will serve as evaluation basis for the Video Browser Showdown 2019-2021 and TREC Video Retrieval (TRECVID) Ad-Hoc Video Search tasks 2019-2021. The dataset comes with a shot segmentation (around 1 million shots) for which we analyze content specifics and statistics. Our research shows that the content of V3C1 is very diverse, has no predominant characteristics and provides a low self-similarity. Thus it is very well suited for video retrieval evaluations as well as for participants of TRECVID AVS or the VBS.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3323873.3325051
- https://dl.acm.org/doi/pdf/10.1145/3323873.3325051
- OA Status
- gold
- Cited By
- 57
- References
- 24
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2950557411
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2950557411Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3323873.3325051Digital Object Identifier
- Title
-
V3C1 DatasetWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-06-05Full publication date if available
- Authors
-
Fabian Berns, Luca Rossetto, Klaus Schoeffmann, Christian Beecks, George AwadList of authors in order
- Landing page
-
https://doi.org/10.1145/3323873.3325051Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3323873.3325051Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3323873.3325051Direct OA link when available
- Concepts
-
Computer science, Video retrieval, Information retrieval, Partition (number theory), Segmentation, Shot (pellet), Quality (philosophy), Artificial intelligence, Chemistry, Combinatorics, Organic chemistry, Philosophy, Epistemology, MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
57Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 10, 2023: 9, 2022: 8, 2021: 15Per-year citation counts (last 5 years)
- References (count)
-
24Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2950557411 |
|---|---|
| doi | https://doi.org/10.1145/3323873.3325051 |
| ids.doi | https://doi.org/10.5167/uzh-178367 |
| ids.mag | 2950557411 |
| ids.openalex | https://openalex.org/W2950557411 |
| fwci | 3.7410015 |
| type | article |
| title | V3C1 Dataset |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 338 |
| biblio.first_page | 334 |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11439 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9993000030517578 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Video Analysis and Summarization |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9976000189781189 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8227942585945129 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2983174267 |
| concepts[1].level | 2 |
| concepts[1].score | 0.753555178642273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3775098 |
| concepts[1].display_name | Video retrieval |
| concepts[2].id | https://openalex.org/C23123220 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6921987533569336 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[2].display_name | Information retrieval |
| concepts[3].id | https://openalex.org/C42812 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6073040962219238 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[3].display_name | Partition (number theory) |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4932636618614197 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C2778344882 |
| concepts[5].level | 2 |
| concepts[5].score | 0.460452139377594 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[5].display_name | Shot (pellet) |
| concepts[6].id | https://openalex.org/C2779530757 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41083499789237976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1207505 |
| concepts[6].display_name | Quality (philosophy) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.2663736939430237 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C185592680 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[8].display_name | Chemistry |
| concepts[9].id | https://openalex.org/C114614502 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[9].display_name | Combinatorics |
| concepts[10].id | https://openalex.org/C178790620 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[10].display_name | Organic chemistry |
| concepts[11].id | https://openalex.org/C138885662 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[11].display_name | Philosophy |
| concepts[12].id | https://openalex.org/C111472728 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[12].display_name | Epistemology |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8227942585945129 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/video-retrieval |
| keywords[1].score | 0.753555178642273 |
| keywords[1].display_name | Video retrieval |
| keywords[2].id | https://openalex.org/keywords/information-retrieval |
| keywords[2].score | 0.6921987533569336 |
| keywords[2].display_name | Information retrieval |
| keywords[3].id | https://openalex.org/keywords/partition |
| keywords[3].score | 0.6073040962219238 |
| keywords[3].display_name | Partition (number theory) |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.4932636618614197 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/shot |
| keywords[5].score | 0.460452139377594 |
| keywords[5].display_name | Shot (pellet) |
| keywords[6].id | https://openalex.org/keywords/quality |
| keywords[6].score | 0.41083499789237976 |
| keywords[6].display_name | Quality (philosophy) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.2663736939430237 |
| keywords[7].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1145/3323873.3325051 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3323873.3325051 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 2019 on International Conference on Multimedia Retrieval |
| locations[0].landing_page_url | https://doi.org/10.1145/3323873.3325051 |
| locations[1].id | pmh:oai:www.zora.uzh.ch:178367 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401281 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Zurich Open Repository and Archive (University of Zurich) |
| locations[1].source.host_organization | https://openalex.org/I202697423 |
| locations[1].source.host_organization_name | University of Zurich |
| locations[1].source.host_organization_lineage | https://openalex.org/I202697423 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Conference or Workshop Item |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | Berns, Fabian; Rossetto, Luca; Schoeffmann, Klaus; Beecks, Christian; Awad, George (2019). V3C1 Dataset An Evaluation of Content Characteristics. In: ACM International Conference on Multimedia Retrieval, Ottawa ON, Canada, 10 July 2019 - 13 July 2019. ACM Press, 334-338. |
| locations[1].landing_page_url | |
| locations[2].id | doi:10.5167/uzh-178367 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S7407051291 |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Universität Zürich, ZORA |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | |
| locations[2].raw_type | article-journal |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://doi.org/10.5167/uzh-178367 |
| indexed_in | crossref, datacite |
| authorships[0].author.id | https://openalex.org/A5051937514 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7033-3789 |
| authorships[0].author.display_name | Fabian Berns |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I22465464 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Münster, Münster, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I22465464 |
| authorships[0].institutions[0].ror | https://ror.org/00pd74e08 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I22465464 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | University of Münster |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fabian Berns |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Münster, Münster, Germany |
| authorships[1].author.id | https://openalex.org/A5052015967 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5389-9465 |
| authorships[1].author.display_name | Luca Rossetto |
| authorships[1].countries | CH |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1850255 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Basel, Basel, Switzerland |
| authorships[1].institutions[0].id | https://openalex.org/I1850255 |
| authorships[1].institutions[0].ror | https://ror.org/02s6k3f65 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1850255 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | University of Basel |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luca Rossetto |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Basel, Basel, Switzerland |
| authorships[2].author.id | https://openalex.org/A5020123717 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9218-1704 |
| authorships[2].author.display_name | Klaus Schoeffmann |
| authorships[2].countries | AT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210166741 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Klagenfurt, Klagenfurt, Austria |
| authorships[2].institutions[0].id | https://openalex.org/I4210166741 |
| authorships[2].institutions[0].ror | https://ror.org/05q9m0937 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210166741 |
| authorships[2].institutions[0].country_code | AT |
| authorships[2].institutions[0].display_name | University of Klagenfurt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Klaus Schoeffmann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Klagenfurt, Klagenfurt, Austria |
| authorships[3].author.id | https://openalex.org/A5039809923 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-9028-629X |
| authorships[3].author.display_name | Christian Beecks |
| authorships[3].countries | DE |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I22465464 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Münster, Münster, Germany |
| authorships[3].institutions[0].id | https://openalex.org/I22465464 |
| authorships[3].institutions[0].ror | https://ror.org/00pd74e08 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I22465464 |
| authorships[3].institutions[0].country_code | DE |
| authorships[3].institutions[0].display_name | University of Münster |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Christian Beecks |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Münster, Münster, Germany |
| authorships[4].author.id | https://openalex.org/A5025202958 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2058-8422 |
| authorships[4].author.display_name | George Awad |
| authorships[4].affiliations[0].raw_affiliation_string | NIST & Dakota Consulting, Inc, Gaithersburg, MD, USA |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | George Awad |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | NIST & Dakota Consulting, Inc, Gaithersburg, MD, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3323873.3325051 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-06-27T00:00:00 |
| display_name | V3C1 Dataset |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4214877189, https://openalex.org/W2074502265, https://openalex.org/W2773965352, https://openalex.org/W2381179799, https://openalex.org/W2334685461, https://openalex.org/W2366718574, https://openalex.org/W2359774528, https://openalex.org/W4298312966, https://openalex.org/W2728912566, https://openalex.org/W2380471679 |
| cited_by_count | 57 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 15 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 7 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1145/3323873.3325051 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3323873.3325051 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the 2019 on International Conference on Multimedia Retrieval |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3323873.3325051 |
| primary_location.id | doi:10.1145/3323873.3325051 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3323873.3325051 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 2019 on International Conference on Multimedia Retrieval |
| primary_location.landing_page_url | https://doi.org/10.1145/3323873.3325051 |
| publication_date | 2019-06-05 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W4238071308, https://openalex.org/W2530319432, https://openalex.org/W2108598243, https://openalex.org/W2617314355, https://openalex.org/W2055351310, https://openalex.org/W1611891804, https://openalex.org/W2277195237, https://openalex.org/W2399883496, https://openalex.org/W2798690692, https://openalex.org/W2073546118, https://openalex.org/W2042241913, https://openalex.org/W2006172562, https://openalex.org/W2895817099, https://openalex.org/W2289772031, https://openalex.org/W6753988885, https://openalex.org/W2250384498, https://openalex.org/W2736941579, https://openalex.org/W2913302158, https://openalex.org/W2950341389, https://openalex.org/W2887297641, https://openalex.org/W2949605076, https://openalex.org/W1977995219, https://openalex.org/W2163605009, https://openalex.org/W2801036749 |
| referenced_works_count | 24 |
| abstract_inverted_index.1 | 73 |
| abstract_inverted_index.a | 69, 101 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.as | 46, 114, 116 |
| abstract_inverted_index.in | 32 |
| abstract_inverted_index.is | 12, 92, 106 |
| abstract_inverted_index.it | 105 |
| abstract_inverted_index.no | 96 |
| abstract_inverted_index.of | 7, 16, 90, 119 |
| abstract_inverted_index.or | 122 |
| abstract_inverted_index.to | 27 |
| abstract_inverted_index.we | 3, 78 |
| abstract_inverted_index.AVS | 121 |
| abstract_inverted_index.Our | 84 |
| abstract_inverted_index.The | 22, 65 |
| abstract_inverted_index.and | 39, 43, 55, 82, 99 |
| abstract_inverted_index.for | 49, 76, 110, 117 |
| abstract_inverted_index.has | 24, 95 |
| abstract_inverted_index.low | 102 |
| abstract_inverted_index.the | 8, 13, 33, 50, 88, 123 |
| abstract_inverted_index.web | 30 |
| abstract_inverted_index.TREC | 56 |
| abstract_inverted_index.Thus | 104 |
| abstract_inverted_index.V3C1 | 9, 91 |
| abstract_inverted_index.VBS. | 124 |
| abstract_inverted_index.been | 25 |
| abstract_inverted_index.good | 36 |
| abstract_inverted_index.shot | 70 |
| abstract_inverted_index.that | 87 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.true | 29 |
| abstract_inverted_index.very | 93, 107 |
| abstract_inverted_index.well | 108, 115 |
| abstract_inverted_index.will | 44 |
| abstract_inverted_index.with | 35, 68 |
| abstract_inverted_index.work | 2 |
| abstract_inverted_index.Video | 51, 57, 61 |
| abstract_inverted_index.basis | 48 |
| abstract_inverted_index.comes | 67 |
| abstract_inverted_index.first | 14 |
| abstract_inverted_index.serve | 45 |
| abstract_inverted_index.shows | 86 |
| abstract_inverted_index.tasks | 63 |
| abstract_inverted_index.video | 111 |
| abstract_inverted_index.which | 11, 77 |
| abstract_inverted_index.wild, | 34 |
| abstract_inverted_index.(V3C). | 21 |
| abstract_inverted_index.Ad-Hoc | 60 |
| abstract_inverted_index.Search | 62 |
| abstract_inverted_index.shots) | 75 |
| abstract_inverted_index.suited | 109 |
| abstract_inverted_index.videos | 31 |
| abstract_inverted_index.visual | 37 |
| abstract_inverted_index.(around | 72 |
| abstract_inverted_index.Browser | 52 |
| abstract_inverted_index.Commons | 19 |
| abstract_inverted_index.TRECVID | 120 |
| abstract_inverted_index.analyze | 4, 79 |
| abstract_inverted_index.content | 5, 41, 80, 89 |
| abstract_inverted_index.dataset | 23, 66 |
| abstract_inverted_index.diverse | 40 |
| abstract_inverted_index.million | 74 |
| abstract_inverted_index.quality | 38 |
| abstract_inverted_index.Creative | 18 |
| abstract_inverted_index.Showdown | 53 |
| abstract_inverted_index.dataset, | 10 |
| abstract_inverted_index.designed | 26 |
| abstract_inverted_index.diverse, | 94 |
| abstract_inverted_index.provides | 100 |
| abstract_inverted_index.research | 85 |
| abstract_inverted_index.theVimeo | 17 |
| abstract_inverted_index.(TRECVID) | 59 |
| abstract_inverted_index.2019-2021 | 54 |
| abstract_inverted_index.Retrieval | 58 |
| abstract_inverted_index.partition | 15 |
| abstract_inverted_index.represent | 28 |
| abstract_inverted_index.retrieval | 112 |
| abstract_inverted_index.specifics | 81 |
| abstract_inverted_index.2019-2021. | 64 |
| abstract_inverted_index.Collection | 20 |
| abstract_inverted_index.evaluation | 47 |
| abstract_inverted_index.statistics | 6 |
| abstract_inverted_index.evaluations | 113 |
| abstract_inverted_index.predominant | 97 |
| abstract_inverted_index.statistics. | 83 |
| abstract_inverted_index.participants | 118 |
| abstract_inverted_index.segmentation | 71 |
| abstract_inverted_index.characteristics | 98 |
| abstract_inverted_index.characteristics, | 42 |
| abstract_inverted_index.self-similarity. | 103 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.9451519 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |