Variable selection methods for descriptive modeling Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0321601
Variable selection methods are widely used in observational studies. While many penalty-based statistical methods introduced in recent decades have primarily focused on prediction, classical statistical methods remain the standard approach in applied research and education. In this study, we evaluated the variable selection performance of several widely used classical and modern methods for descriptive modeling, using both simulated and real data. A novel aspect of our research is the incorporation of a statistical approach inspired by the supersaturated design-based factor screening method in an observational setting. The methods were evaluated based on Type I and Type II error rates, the average number of predictors selected, variable inclusion frequency, absolute bias, and root mean square error. The detailed results of these evaluations are presented, and the methods’ performance is discussed across various simulation scenarios and in application to real data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0321601
- OA Status
- gold
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410948757
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410948757Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0321601Digital Object Identifier
- Title
-
Variable selection methods for descriptive modelingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-02Full publication date if available
- Authors
-
Anuja Dharmaratne, Alysha De Livera, S. Georgiou, Stella StylianouList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0321601Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0321601Direct OA link when available
- Concepts
-
Observational study, Computer science, Mean squared error, Variable (mathematics), Statistics, Selection (genetic algorithm), Type I and type II errors, Feature selection, Data mining, Machine learning, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410948757 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0321601 |
| ids.doi | https://doi.org/10.1371/journal.pone.0321601 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40456058 |
| ids.openalex | https://openalex.org/W4410948757 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D015233 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Models, Statistical |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003198 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Computer Simulation |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D015233 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Models, Statistical |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D003198 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Computer Simulation |
| type | article |
| title | Variable selection methods for descriptive modeling |
| biblio.issue | 6 |
| biblio.volume | 20 |
| biblio.last_page | e0321601 |
| biblio.first_page | e0321601 |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9980000257492065 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T11871 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9977999925613403 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Statistical Methods and Models |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9962999820709229 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C23131810 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6926730275154114 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q818574 |
| concepts[0].display_name | Observational study |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6461181640625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C139945424 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5669406056404114 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[2].display_name | Mean squared error |
| concepts[3].id | https://openalex.org/C182365436 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5569241642951965 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q50701 |
| concepts[3].display_name | Variable (mathematics) |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5212886333465576 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C81917197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5104864835739136 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[5].display_name | Selection (genetic algorithm) |
| concepts[6].id | https://openalex.org/C40696583 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5035879015922546 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q989120 |
| concepts[6].display_name | Type I and type II errors |
| concepts[7].id | https://openalex.org/C148483581 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45238590240478516 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[7].display_name | Feature selection |
| concepts[8].id | https://openalex.org/C124101348 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3364436626434326 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[8].display_name | Data mining |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2941155731678009 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.27294450998306274 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C134306372 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[11].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/observational-study |
| keywords[0].score | 0.6926730275154114 |
| keywords[0].display_name | Observational study |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6461181640625 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mean-squared-error |
| keywords[2].score | 0.5669406056404114 |
| keywords[2].display_name | Mean squared error |
| keywords[3].id | https://openalex.org/keywords/variable |
| keywords[3].score | 0.5569241642951965 |
| keywords[3].display_name | Variable (mathematics) |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.5212886333465576 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/selection |
| keywords[5].score | 0.5104864835739136 |
| keywords[5].display_name | Selection (genetic algorithm) |
| keywords[6].id | https://openalex.org/keywords/type-i-and-type-ii-errors |
| keywords[6].score | 0.5035879015922546 |
| keywords[6].display_name | Type I and type II errors |
| keywords[7].id | https://openalex.org/keywords/feature-selection |
| keywords[7].score | 0.45238590240478516 |
| keywords[7].display_name | Feature selection |
| keywords[8].id | https://openalex.org/keywords/data-mining |
| keywords[8].score | 0.3364436626434326 |
| keywords[8].display_name | Data mining |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.2941155731678009 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.27294450998306274 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0321601 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS One |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0321601 |
| locations[1].id | pmid:40456058 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40456058 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12129470 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS One |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12129470 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5007391749 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5630-4818 |
| authorships[0].author.display_name | Anuja Dharmaratne |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| authorships[0].institutions[0].id | https://openalex.org/I82951845 |
| authorships[0].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | RMIT University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | A D V Tharkeshi T Dharmaratne |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| authorships[1].author.id | https://openalex.org/A5013908796 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4981-4155 |
| authorships[1].author.display_name | Alysha De Livera |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I196829312 |
| authorships[1].affiliations[0].raw_affiliation_string | Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria, Australia. |
| authorships[1].institutions[0].id | https://openalex.org/I196829312 |
| authorships[1].institutions[0].ror | https://ror.org/01rxfrp27 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I196829312 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | La Trobe University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alysha De Livera |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Engineering and Mathematical Sciences, La Trobe University, Bundoora, Victoria, Australia. |
| authorships[2].author.id | https://openalex.org/A5048311862 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5096-0067 |
| authorships[2].author.display_name | S. Georgiou |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| authorships[2].institutions[0].id | https://openalex.org/I82951845 |
| authorships[2].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | RMIT University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stelios Georgiou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| authorships[3].author.id | https://openalex.org/A5063467236 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3677-2830 |
| authorships[3].author.display_name | Stella Stylianou |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| authorships[3].institutions[0].id | https://openalex.org/I82951845 |
| authorships[3].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | RMIT University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Stella Stylianou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Science, RMIT University, Melbourne, Victoria, Australia. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0321601 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Variable selection methods for descriptive modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9980000257492065 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W4381328000, https://openalex.org/W2109147503, https://openalex.org/W2103779230, https://openalex.org/W2911339178, https://openalex.org/W334096847, https://openalex.org/W2322581019, https://openalex.org/W3141050733, https://openalex.org/W2030936866, https://openalex.org/W1533309927, https://openalex.org/W3141550469 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1371/journal.pone.0321601 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS One |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0321601 |
| primary_location.id | doi:10.1371/journal.pone.0321601 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS One |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0321601 |
| publication_date | 2025-06-02 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4213286494, https://openalex.org/W2191755155, https://openalex.org/W2132129083, https://openalex.org/W2342731602, https://openalex.org/W2142635246, https://openalex.org/W2168175751, https://openalex.org/W1599304806, https://openalex.org/W2167122694, https://openalex.org/W2099237778, https://openalex.org/W1999472732, https://openalex.org/W2158188575, https://openalex.org/W1969998671, https://openalex.org/W2057948984, https://openalex.org/W2152766615, https://openalex.org/W2096179151, https://openalex.org/W3203880385, https://openalex.org/W2097360283, https://openalex.org/W3094072616, https://openalex.org/W4401135718, https://openalex.org/W4393995180, https://openalex.org/W4390589710, https://openalex.org/W2782176193, https://openalex.org/W2146094182, https://openalex.org/W2135046866, https://openalex.org/W2122825543, https://openalex.org/W2020925091, https://openalex.org/W6669378403, https://openalex.org/W2154560360, https://openalex.org/W2155261478, https://openalex.org/W2156665896, https://openalex.org/W2088068024, https://openalex.org/W2910575305, https://openalex.org/W3026620303, https://openalex.org/W3119696742, https://openalex.org/W4224309599, https://openalex.org/W4400163252, https://openalex.org/W1522011445, https://openalex.org/W2147842842, https://openalex.org/W1560941242, https://openalex.org/W1999454801, https://openalex.org/W4210599395, https://openalex.org/W2107673074, https://openalex.org/W100935533, https://openalex.org/W2030572537, https://openalex.org/W45970655, https://openalex.org/W1490426213, https://openalex.org/W1984776583, https://openalex.org/W2418069332, https://openalex.org/W2113579338, https://openalex.org/W2182658016, https://openalex.org/W1964555225, https://openalex.org/W2794164678, https://openalex.org/W2040851729, https://openalex.org/W2018066983, https://openalex.org/W2071069262, https://openalex.org/W1987911893, https://openalex.org/W2598939710, https://openalex.org/W1964003007, https://openalex.org/W2550338445, https://openalex.org/W3112048052, https://openalex.org/W4382653555, https://openalex.org/W2026064499, https://openalex.org/W4210643453, https://openalex.org/W4386244863, https://openalex.org/W2143313161, https://openalex.org/W2804586924, https://openalex.org/W3157383579, https://openalex.org/W1602160603, https://openalex.org/W1991901901, https://openalex.org/W2089763487, https://openalex.org/W2148773517, https://openalex.org/W2074682976, https://openalex.org/W2149144946, https://openalex.org/W2995103896, https://openalex.org/W1965125844, https://openalex.org/W2775363893, https://openalex.org/W2103459159, https://openalex.org/W2092058109, https://openalex.org/W2073790637, https://openalex.org/W2494169975, https://openalex.org/W2898355413, https://openalex.org/W2903122881, https://openalex.org/W3102310197, https://openalex.org/W2009435671, https://openalex.org/W4233343837, https://openalex.org/W3106108064, https://openalex.org/W4252122816, https://openalex.org/W3098865414, https://openalex.org/W4362471317, https://openalex.org/W2017693767, https://openalex.org/W4294541781, https://openalex.org/W2075490785 |
| referenced_works_count | 92 |
| abstract_inverted_index.A | 61 |
| abstract_inverted_index.I | 93 |
| abstract_inverted_index.a | 71 |
| abstract_inverted_index.II | 96 |
| abstract_inverted_index.In | 35 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.by | 75 |
| abstract_inverted_index.in | 6, 15, 30, 82, 134 |
| abstract_inverted_index.is | 67, 127 |
| abstract_inverted_index.of | 44, 64, 70, 102, 118 |
| abstract_inverted_index.on | 21, 91 |
| abstract_inverted_index.to | 136 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.The | 86, 115 |
| abstract_inverted_index.and | 33, 49, 58, 94, 110, 123, 133 |
| abstract_inverted_index.are | 3, 121 |
| abstract_inverted_index.for | 52 |
| abstract_inverted_index.our | 65 |
| abstract_inverted_index.the | 27, 40, 68, 76, 99, 124 |
| abstract_inverted_index.Type | 92, 95 |
| abstract_inverted_index.both | 56 |
| abstract_inverted_index.have | 18 |
| abstract_inverted_index.many | 10 |
| abstract_inverted_index.mean | 112 |
| abstract_inverted_index.real | 59, 137 |
| abstract_inverted_index.root | 111 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.used | 5, 47 |
| abstract_inverted_index.were | 88 |
| abstract_inverted_index.While | 9 |
| abstract_inverted_index.based | 90 |
| abstract_inverted_index.bias, | 109 |
| abstract_inverted_index.data. | 60, 138 |
| abstract_inverted_index.error | 97 |
| abstract_inverted_index.novel | 62 |
| abstract_inverted_index.these | 119 |
| abstract_inverted_index.using | 55 |
| abstract_inverted_index.across | 129 |
| abstract_inverted_index.aspect | 63 |
| abstract_inverted_index.error. | 114 |
| abstract_inverted_index.factor | 79 |
| abstract_inverted_index.method | 81 |
| abstract_inverted_index.modern | 50 |
| abstract_inverted_index.number | 101 |
| abstract_inverted_index.rates, | 98 |
| abstract_inverted_index.recent | 16 |
| abstract_inverted_index.remain | 26 |
| abstract_inverted_index.square | 113 |
| abstract_inverted_index.study, | 37 |
| abstract_inverted_index.widely | 4, 46 |
| abstract_inverted_index.applied | 31 |
| abstract_inverted_index.average | 100 |
| abstract_inverted_index.decades | 17 |
| abstract_inverted_index.focused | 20 |
| abstract_inverted_index.methods | 2, 13, 25, 51, 87 |
| abstract_inverted_index.results | 117 |
| abstract_inverted_index.several | 45 |
| abstract_inverted_index.various | 130 |
| abstract_inverted_index.Variable | 0 |
| abstract_inverted_index.absolute | 108 |
| abstract_inverted_index.approach | 29, 73 |
| abstract_inverted_index.detailed | 116 |
| abstract_inverted_index.inspired | 74 |
| abstract_inverted_index.research | 32, 66 |
| abstract_inverted_index.setting. | 85 |
| abstract_inverted_index.standard | 28 |
| abstract_inverted_index.studies. | 8 |
| abstract_inverted_index.variable | 41, 105 |
| abstract_inverted_index.classical | 23, 48 |
| abstract_inverted_index.discussed | 128 |
| abstract_inverted_index.evaluated | 39, 89 |
| abstract_inverted_index.inclusion | 106 |
| abstract_inverted_index.modeling, | 54 |
| abstract_inverted_index.primarily | 19 |
| abstract_inverted_index.scenarios | 132 |
| abstract_inverted_index.screening | 80 |
| abstract_inverted_index.selected, | 104 |
| abstract_inverted_index.selection | 1, 42 |
| abstract_inverted_index.simulated | 57 |
| abstract_inverted_index.education. | 34 |
| abstract_inverted_index.frequency, | 107 |
| abstract_inverted_index.introduced | 14 |
| abstract_inverted_index.methods’ | 125 |
| abstract_inverted_index.predictors | 103 |
| abstract_inverted_index.presented, | 122 |
| abstract_inverted_index.simulation | 131 |
| abstract_inverted_index.application | 135 |
| abstract_inverted_index.descriptive | 53 |
| abstract_inverted_index.evaluations | 120 |
| abstract_inverted_index.performance | 43, 126 |
| abstract_inverted_index.prediction, | 22 |
| abstract_inverted_index.statistical | 12, 24, 72 |
| abstract_inverted_index.design-based | 78 |
| abstract_inverted_index.incorporation | 69 |
| abstract_inverted_index.observational | 7, 84 |
| abstract_inverted_index.penalty-based | 11 |
| abstract_inverted_index.supersaturated | 77 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.19832325 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |