Variance reduction estimation for return models with jumps using gamma asymmetric kernels Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1515/snde-2018-0001
This paper discusses Nadaraya-Watson estimators for the unknown coefficients in second-order diffusion model with jumps constructed with Gamma asymmetric kernels. Compared with existing nonparametric estimators constructed with Gaussian symmetric kernels, local constant smoothing using Gamma asymmetric kernels possesses some extra advantages such as boundary bias correction, variance reduction and resistance to sparse design points, which is validated through theoretical details and finite sample simulation study. Under the regular conditions, the weak consistency and the asymptotic normality of these estimators are presented. Finally, the statistical advantages of the nonparametric estimators are depicted through 5-minute high-frequency data from Shenzhen Stock Exchange in China.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1515/snde-2018-0001
- https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdf
- OA Status
- bronze
- Cited By
- 3
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2939924526
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2939924526Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1515/snde-2018-0001Digital Object Identifier
- Title
-
Variance reduction estimation for return models with jumps using gamma asymmetric kernelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-04-09Full publication date if available
- Authors
-
Yuping Song, Weijie Hou, Zhou Sheng-yiList of authors in order
- Landing page
-
https://doi.org/10.1515/snde-2018-0001Publisher landing page
- PDF URL
-
https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdfDirect OA link when available
- Concepts
-
Estimator, Mathematics, Nonparametric statistics, Variance reduction, Smoothing, Consistency (knowledge bases), Kernel smoother, Asymptotic distribution, Smoothing spline, Applied mathematics, Gaussian, Econometrics, Statistics, Kernel method, Monte Carlo method, Computer science, Bilinear interpolation, Geometry, Artificial intelligence, Spline interpolation, Support vector machine, Radial basis function kernel, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2021: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2939924526 |
|---|---|
| doi | https://doi.org/10.1515/snde-2018-0001 |
| ids.doi | https://doi.org/10.1515/snde-2018-0001 |
| ids.mag | 2939924526 |
| ids.openalex | https://openalex.org/W2939924526 |
| fwci | 0.59765271 |
| type | article |
| title | Variance reduction estimation for return models with jumps using gamma asymmetric kernels |
| biblio.issue | 5 |
| biblio.volume | 23 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10282 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2003 |
| topics[0].subfield.display_name | Finance |
| topics[0].display_name | Financial Risk and Volatility Modeling |
| topics[1].id | https://openalex.org/T10067 |
| topics[1].field.id | https://openalex.org/fields/20 |
| topics[1].field.display_name | Economics, Econometrics and Finance |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2003 |
| topics[1].subfield.display_name | Finance |
| topics[1].display_name | Stochastic processes and financial applications |
| topics[2].id | https://openalex.org/T10136 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9947999715805054 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8474655151367188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C33923547 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7376807332038879 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[1].display_name | Mathematics |
| concepts[2].id | https://openalex.org/C102366305 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6700067520141602 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1097688 |
| concepts[2].display_name | Nonparametric statistics |
| concepts[3].id | https://openalex.org/C62644790 |
| concepts[3].level | 3 |
| concepts[3].score | 0.536756157875061 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3454689 |
| concepts[3].display_name | Variance reduction |
| concepts[4].id | https://openalex.org/C3770464 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5226868391036987 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[4].display_name | Smoothing |
| concepts[5].id | https://openalex.org/C2776436953 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5099533796310425 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5163215 |
| concepts[5].display_name | Consistency (knowledge bases) |
| concepts[6].id | https://openalex.org/C27406209 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5093806982040405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q6394203 |
| concepts[6].display_name | Kernel smoother |
| concepts[7].id | https://openalex.org/C65778772 |
| concepts[7].level | 3 |
| concepts[7].score | 0.48165977001190186 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12345341 |
| concepts[7].display_name | Asymptotic distribution |
| concepts[8].id | https://openalex.org/C107457265 |
| concepts[8].level | 4 |
| concepts[8].score | 0.45257657766342163 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7546460 |
| concepts[8].display_name | Smoothing spline |
| concepts[9].id | https://openalex.org/C28826006 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4492281675338745 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[9].display_name | Applied mathematics |
| concepts[10].id | https://openalex.org/C163716315 |
| concepts[10].level | 2 |
| concepts[10].score | 0.410788357257843 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q901177 |
| concepts[10].display_name | Gaussian |
| concepts[11].id | https://openalex.org/C149782125 |
| concepts[11].level | 1 |
| concepts[11].score | 0.38601481914520264 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[11].display_name | Econometrics |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3804282546043396 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C122280245 |
| concepts[13].level | 3 |
| concepts[13].score | 0.1659143567085266 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q620622 |
| concepts[13].display_name | Kernel method |
| concepts[14].id | https://openalex.org/C19499675 |
| concepts[14].level | 2 |
| concepts[14].score | 0.12886366248130798 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[14].display_name | Monte Carlo method |
| concepts[15].id | https://openalex.org/C41008148 |
| concepts[15].level | 0 |
| concepts[15].score | 0.12096288800239563 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[15].display_name | Computer science |
| concepts[16].id | https://openalex.org/C205203396 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q612143 |
| concepts[16].display_name | Bilinear interpolation |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C154945302 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[18].display_name | Artificial intelligence |
| concepts[19].id | https://openalex.org/C31447003 |
| concepts[19].level | 3 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q545002 |
| concepts[19].display_name | Spline interpolation |
| concepts[20].id | https://openalex.org/C12267149 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[20].display_name | Support vector machine |
| concepts[21].id | https://openalex.org/C75866337 |
| concepts[21].level | 4 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7280263 |
| concepts[21].display_name | Radial basis function kernel |
| concepts[22].id | https://openalex.org/C62520636 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[22].display_name | Quantum mechanics |
| concepts[23].id | https://openalex.org/C121332964 |
| concepts[23].level | 0 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[23].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.8474655151367188 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/mathematics |
| keywords[1].score | 0.7376807332038879 |
| keywords[1].display_name | Mathematics |
| keywords[2].id | https://openalex.org/keywords/nonparametric-statistics |
| keywords[2].score | 0.6700067520141602 |
| keywords[2].display_name | Nonparametric statistics |
| keywords[3].id | https://openalex.org/keywords/variance-reduction |
| keywords[3].score | 0.536756157875061 |
| keywords[3].display_name | Variance reduction |
| keywords[4].id | https://openalex.org/keywords/smoothing |
| keywords[4].score | 0.5226868391036987 |
| keywords[4].display_name | Smoothing |
| keywords[5].id | https://openalex.org/keywords/consistency |
| keywords[5].score | 0.5099533796310425 |
| keywords[5].display_name | Consistency (knowledge bases) |
| keywords[6].id | https://openalex.org/keywords/kernel-smoother |
| keywords[6].score | 0.5093806982040405 |
| keywords[6].display_name | Kernel smoother |
| keywords[7].id | https://openalex.org/keywords/asymptotic-distribution |
| keywords[7].score | 0.48165977001190186 |
| keywords[7].display_name | Asymptotic distribution |
| keywords[8].id | https://openalex.org/keywords/smoothing-spline |
| keywords[8].score | 0.45257657766342163 |
| keywords[8].display_name | Smoothing spline |
| keywords[9].id | https://openalex.org/keywords/applied-mathematics |
| keywords[9].score | 0.4492281675338745 |
| keywords[9].display_name | Applied mathematics |
| keywords[10].id | https://openalex.org/keywords/gaussian |
| keywords[10].score | 0.410788357257843 |
| keywords[10].display_name | Gaussian |
| keywords[11].id | https://openalex.org/keywords/econometrics |
| keywords[11].score | 0.38601481914520264 |
| keywords[11].display_name | Econometrics |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.3804282546043396 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/kernel-method |
| keywords[13].score | 0.1659143567085266 |
| keywords[13].display_name | Kernel method |
| keywords[14].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[14].score | 0.12886366248130798 |
| keywords[14].display_name | Monte Carlo method |
| keywords[15].id | https://openalex.org/keywords/computer-science |
| keywords[15].score | 0.12096288800239563 |
| keywords[15].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1515/snde-2018-0001 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S193530623 |
| locations[0].source.issn | 1081-1826, 1558-3708 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1081-1826 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Studies in Nonlinear Dynamics and Econometrics |
| locations[0].source.host_organization | https://openalex.org/P4310313990 |
| locations[0].source.host_organization_name | De Gruyter |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310313990 |
| locations[0].source.host_organization_lineage_names | De Gruyter |
| locations[0].license | |
| locations[0].pdf_url | https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Studies in Nonlinear Dynamics & Econometrics |
| locations[0].landing_page_url | https://doi.org/10.1515/snde-2018-0001 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100653854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7506-1719 |
| authorships[0].author.display_name | Yuping Song |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I21945476 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Normal University , Shanghai , China |
| authorships[0].institutions[0].id | https://openalex.org/I21945476 |
| authorships[0].institutions[0].ror | https://ror.org/01cxqmw89 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I21945476 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shanghai Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuping Song |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Shanghai Normal University , Shanghai , China |
| authorships[1].author.id | https://openalex.org/A5052702029 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1671-203X |
| authorships[1].author.display_name | Weijie Hou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I21945476 |
| authorships[1].affiliations[0].raw_affiliation_string | Shanghai Normal University , Shanghai , China |
| authorships[1].institutions[0].id | https://openalex.org/I21945476 |
| authorships[1].institutions[0].ror | https://ror.org/01cxqmw89 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I21945476 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weijie Hou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shanghai Normal University , Shanghai , China |
| authorships[2].author.id | https://openalex.org/A5078090311 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhou Sheng-yi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I21945476 |
| authorships[2].affiliations[0].raw_affiliation_string | Shanghai Normal University , Shanghai , China |
| authorships[2].institutions[0].id | https://openalex.org/I21945476 |
| authorships[2].institutions[0].ror | https://ror.org/01cxqmw89 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I21945476 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai Normal University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Shengyi Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Shanghai Normal University , Shanghai , China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-04-25T00:00:00 |
| display_name | Variance reduction estimation for return models with jumps using gamma asymmetric kernels |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-12-13T23:11:00.310470 |
| primary_topic.id | https://openalex.org/T10282 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2003 |
| primary_topic.subfield.display_name | Finance |
| primary_topic.display_name | Financial Risk and Volatility Modeling |
| related_works | https://openalex.org/W2996360717, https://openalex.org/W2955408105, https://openalex.org/W2061650536, https://openalex.org/W3006505822, https://openalex.org/W2153213534, https://openalex.org/W1509119367, https://openalex.org/W1991430094, https://openalex.org/W3123931813, https://openalex.org/W2050788636, https://openalex.org/W3100989951 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1515/snde-2018-0001 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S193530623 |
| best_oa_location.source.issn | 1081-1826, 1558-3708 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1081-1826 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Studies in Nonlinear Dynamics and Econometrics |
| best_oa_location.source.host_organization | https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_name | De Gruyter |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_lineage_names | De Gruyter |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Studies in Nonlinear Dynamics & Econometrics |
| best_oa_location.landing_page_url | https://doi.org/10.1515/snde-2018-0001 |
| primary_location.id | doi:10.1515/snde-2018-0001 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S193530623 |
| primary_location.source.issn | 1081-1826, 1558-3708 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1081-1826 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Studies in Nonlinear Dynamics and Econometrics |
| primary_location.source.host_organization | https://openalex.org/P4310313990 |
| primary_location.source.host_organization_name | De Gruyter |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310313990 |
| primary_location.source.host_organization_lineage_names | De Gruyter |
| primary_location.license | |
| primary_location.pdf_url | https://www.degruyter.com/downloadpdf/journals/snde/23/5/article-20180001.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Studies in Nonlinear Dynamics & Econometrics |
| primary_location.landing_page_url | https://doi.org/10.1515/snde-2018-0001 |
| publication_date | 2019-04-09 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2125854854, https://openalex.org/W2136215272, https://openalex.org/W1994083140, https://openalex.org/W2054211118, https://openalex.org/W2062042027, https://openalex.org/W2050617311, https://openalex.org/W2748085134, https://openalex.org/W2059908963, https://openalex.org/W2053255022, https://openalex.org/W1573503109, https://openalex.org/W2119876373, https://openalex.org/W2021310871, https://openalex.org/W2338968327, https://openalex.org/W4293092461, https://openalex.org/W2107193251, https://openalex.org/W2114095694, https://openalex.org/W3021467507, https://openalex.org/W4246040193, https://openalex.org/W1980519218, https://openalex.org/W2009129315, https://openalex.org/W1980500537, https://openalex.org/W1995522593, https://openalex.org/W2011131366, https://openalex.org/W2731788773, https://openalex.org/W2068273852, https://openalex.org/W2043758517, https://openalex.org/W2557956804, https://openalex.org/W2019463243, https://openalex.org/W2522022257, https://openalex.org/W2962868822, https://openalex.org/W2130211402, https://openalex.org/W2329341088, https://openalex.org/W2081877251 |
| referenced_works_count | 33 |
| abstract_inverted_index.as | 43 |
| abstract_inverted_index.in | 10, 100 |
| abstract_inverted_index.is | 56 |
| abstract_inverted_index.of | 77, 86 |
| abstract_inverted_index.to | 51 |
| abstract_inverted_index.and | 49, 61, 73 |
| abstract_inverted_index.are | 80, 90 |
| abstract_inverted_index.for | 6 |
| abstract_inverted_index.the | 7, 67, 70, 74, 83, 87 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.bias | 45 |
| abstract_inverted_index.data | 95 |
| abstract_inverted_index.from | 96 |
| abstract_inverted_index.some | 39 |
| abstract_inverted_index.such | 42 |
| abstract_inverted_index.weak | 71 |
| abstract_inverted_index.with | 14, 17, 22, 27 |
| abstract_inverted_index.Gamma | 18, 35 |
| abstract_inverted_index.Stock | 98 |
| abstract_inverted_index.Under | 66 |
| abstract_inverted_index.extra | 40 |
| abstract_inverted_index.jumps | 15 |
| abstract_inverted_index.local | 31 |
| abstract_inverted_index.model | 13 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.these | 78 |
| abstract_inverted_index.using | 34 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.China. | 101 |
| abstract_inverted_index.design | 53 |
| abstract_inverted_index.finite | 62 |
| abstract_inverted_index.sample | 63 |
| abstract_inverted_index.sparse | 52 |
| abstract_inverted_index.study. | 65 |
| abstract_inverted_index.details | 60 |
| abstract_inverted_index.kernels | 37 |
| abstract_inverted_index.points, | 54 |
| abstract_inverted_index.regular | 68 |
| abstract_inverted_index.through | 58, 92 |
| abstract_inverted_index.unknown | 8 |
| abstract_inverted_index.5-minute | 93 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 21 |
| abstract_inverted_index.Exchange | 99 |
| abstract_inverted_index.Finally, | 82 |
| abstract_inverted_index.Gaussian | 28 |
| abstract_inverted_index.Shenzhen | 97 |
| abstract_inverted_index.boundary | 44 |
| abstract_inverted_index.constant | 32 |
| abstract_inverted_index.depicted | 91 |
| abstract_inverted_index.existing | 23 |
| abstract_inverted_index.kernels, | 30 |
| abstract_inverted_index.kernels. | 20 |
| abstract_inverted_index.variance | 47 |
| abstract_inverted_index.diffusion | 12 |
| abstract_inverted_index.discusses | 3 |
| abstract_inverted_index.normality | 76 |
| abstract_inverted_index.possesses | 38 |
| abstract_inverted_index.reduction | 48 |
| abstract_inverted_index.smoothing | 33 |
| abstract_inverted_index.symmetric | 29 |
| abstract_inverted_index.validated | 57 |
| abstract_inverted_index.advantages | 41, 85 |
| abstract_inverted_index.asymmetric | 19, 36 |
| abstract_inverted_index.asymptotic | 75 |
| abstract_inverted_index.estimators | 5, 25, 79, 89 |
| abstract_inverted_index.presented. | 81 |
| abstract_inverted_index.resistance | 50 |
| abstract_inverted_index.simulation | 64 |
| abstract_inverted_index.conditions, | 69 |
| abstract_inverted_index.consistency | 72 |
| abstract_inverted_index.constructed | 16, 26 |
| abstract_inverted_index.correction, | 46 |
| abstract_inverted_index.statistical | 84 |
| abstract_inverted_index.theoretical | 59 |
| abstract_inverted_index.coefficients | 9 |
| abstract_inverted_index.second-order | 11 |
| abstract_inverted_index.nonparametric | 24, 88 |
| abstract_inverted_index.high-frequency | 94 |
| abstract_inverted_index.Nadaraya-Watson | 4 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100653854 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I21945476 |
| citation_normalized_percentile.value | 0.69657751 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |