VarNMF: non-negative probabilistic factorization with source variation Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1093/bioinformatics/btae758
Motivation Non-negative matrix factorization (NMF) is a powerful tool often applied to genomic data to identify non-negative latent components that constitute linearly mixed samples. It is useful when the observed signal combines contributions from multiple sources, such as cell types in bulk measurements of heterogeneous tissue. NMF accounts for two types of variation between samples — disparities in the proportions of sources and observation noise. However, in many settings, there is also a non-trivial variation between samples in the contribution of each source to the mixed data. This variation cannot be accurately modeled using the NMF framework. Results We present VarNMF, a probabilistic extension of NMF that explicitly models this variation in source values. We show that by modeling sources as non-negative distributions, we can recover source variation directly from mixed samples without observing any of the sources directly. We apply VarNMF to a cell-free ChIP-seq dataset of two cancer cohorts and a healthy cohort, demonstrating that VarNMF provides a better estimation of the data distribution. Moreover, VarNMF extracts cancer-associated source distributions that decouple the tumor characteristics from the amount of tumor contribution, and identify patient-specific disease behaviors. This decomposition highlights the inter-tumor variability that is obscured in the mixed samples. Availability and implementation Code is available at https://github.com/Nir-Friedman-Lab/VarNMF.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bioinformatics/btae758
- https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405862633
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405862633Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bioinformatics/btae758Digital Object Identifier
- Title
-
VarNMF: non-negative probabilistic factorization with source variationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-26Full publication date if available
- Authors
-
E. Fallik, Nir FriedmanList of authors in order
- Landing page
-
https://doi.org/10.1093/bioinformatics/btae758Publisher landing page
- PDF URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdfDirect OA link when available
- Concepts
-
Probabilistic logic, Factorization, Variation (astronomy), Computer science, Algorithm, Artificial intelligence, Physics, AstrophysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405862633 |
|---|---|
| doi | https://doi.org/10.1093/bioinformatics/btae758 |
| ids.doi | https://doi.org/10.1093/bioinformatics/btae758 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39731736 |
| ids.openalex | https://openalex.org/W4405862633 |
| fwci | 0.63877855 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | Q000235 |
| mesh[2].descriptor_ui | D009369 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | genetics |
| mesh[2].descriptor_name | Neoplasms |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D023281 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Genomics |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000465 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Algorithms |
| mesh[6].qualifier_ui | Q000235 |
| mesh[6].descriptor_ui | D009369 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | genetics |
| mesh[6].descriptor_name | Neoplasms |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D023281 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Genomics |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000465 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Algorithms |
| mesh[10].qualifier_ui | Q000235 |
| mesh[10].descriptor_ui | D009369 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | genetics |
| mesh[10].descriptor_name | Neoplasms |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D023281 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Genomics |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | Q000235 |
| mesh[14].descriptor_ui | D009369 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | genetics |
| mesh[14].descriptor_name | Neoplasms |
| mesh[15].qualifier_ui | Q000379 |
| mesh[15].descriptor_ui | D023281 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | methods |
| mesh[15].descriptor_name | Genomics |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D006801 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Humans |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000465 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Algorithms |
| mesh[18].qualifier_ui | Q000235 |
| mesh[18].descriptor_ui | D009369 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | genetics |
| mesh[18].descriptor_name | Neoplasms |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D023281 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Genomics |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D006801 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Humans |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000465 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Algorithms |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D023281 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Genomics |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D012984 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Software |
| mesh[24].qualifier_ui | Q000379 |
| mesh[24].descriptor_ui | D000081204 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | methods |
| mesh[24].descriptor_name | Chromatin Immunoprecipitation Sequencing |
| mesh[25].qualifier_ui | Q000235 |
| mesh[25].descriptor_ui | D009369 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | genetics |
| mesh[25].descriptor_name | Neoplasms |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D019295 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Computational Biology |
| type | article |
| title | VarNMF: non-negative probabilistic factorization with source variation |
| biblio.issue | 1 |
| biblio.volume | 41 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.992900013923645 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9891999959945679 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10201 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9887999892234802 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Speech Recognition and Synthesis |
| is_xpac | False |
| apc_list.value | 3618 |
| apc_list.currency | USD |
| apc_list.value_usd | 3618 |
| apc_paid.value | 3618 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3618 |
| concepts[0].id | https://openalex.org/C49937458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.673015832901001 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[0].display_name | Probabilistic logic |
| concepts[1].id | https://openalex.org/C187834632 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5943542122840881 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188804 |
| concepts[1].display_name | Factorization |
| concepts[2].id | https://openalex.org/C2778334786 |
| concepts[2].level | 2 |
| concepts[2].score | 0.580415666103363 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1586270 |
| concepts[2].display_name | Variation (astronomy) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5629603266716003 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.30863818526268005 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.2580556571483612 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.07017391920089722 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C44870925 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[7].display_name | Astrophysics |
| keywords[0].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[0].score | 0.673015832901001 |
| keywords[0].display_name | Probabilistic logic |
| keywords[1].id | https://openalex.org/keywords/factorization |
| keywords[1].score | 0.5943542122840881 |
| keywords[1].display_name | Factorization |
| keywords[2].id | https://openalex.org/keywords/variation |
| keywords[2].score | 0.580415666103363 |
| keywords[2].display_name | Variation (astronomy) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5629603266716003 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.30863818526268005 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.2580556571483612 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.07017391920089722 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1093/bioinformatics/btae758 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S52395412 |
| locations[0].source.issn | 1367-4803, 1367-4811 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1367-4803 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bioinformatics/btae758 |
| locations[1].id | pmid:39731736 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Bioinformatics (Oxford, England) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39731736 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:11979754 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Bioinformatics |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11979754 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5061783604 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | E. Fallik |
| authorships[0].countries | IL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I197251160 |
| authorships[0].affiliations[0].raw_affiliation_string | Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I197251160 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer Science and Engineering, The Hebrew University of Jerusalem |
| authorships[0].institutions[0].id | https://openalex.org/I197251160 |
| authorships[0].institutions[0].ror | https://ror.org/03qxff017 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I197251160 |
| authorships[0].institutions[0].country_code | IL |
| authorships[0].institutions[0].display_name | Hebrew University of Jerusalem |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ela Fallik |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, School of Computer Science and Engineering, The Hebrew University of Jerusalem |
| authorships[1].author.id | https://openalex.org/A5076999649 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9678-3550 |
| authorships[1].author.display_name | Nir Friedman |
| authorships[1].countries | IL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I197251160 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, The Hebrew University of Jerusalem |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I197251160 |
| authorships[1].affiliations[1].raw_affiliation_string | Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem |
| authorships[1].institutions[0].id | https://openalex.org/I197251160 |
| authorships[1].institutions[0].ror | https://ror.org/03qxff017 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I197251160 |
| authorships[1].institutions[0].country_code | IL |
| authorships[1].institutions[0].display_name | Hebrew University of Jerusalem |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nir Friedman |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, The Hebrew University of Jerusalem, School of Computer Science and Engineering, The Hebrew University of Jerusalem |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | VarNMF: non-negative probabilistic factorization with source variation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.992900013923645 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2386430105, https://openalex.org/W2356521405, https://openalex.org/W2038534795, https://openalex.org/W2384358604, https://openalex.org/W2051487156, https://openalex.org/W1567829292, https://openalex.org/W3001063351 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bioinformatics/btae758 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S52395412 |
| best_oa_location.source.issn | 1367-4803, 1367-4811 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1367-4803 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btae758 |
| primary_location.id | doi:10.1093/bioinformatics/btae758 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S52395412 |
| primary_location.source.issn | 1367-4803, 1367-4811 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1367-4803 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://academic.oup.com/bioinformatics/advance-article-pdf/doi/10.1093/bioinformatics/btae758/61290454/btae758.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bioinformatics/btae758 |
| publication_date | 2024-12-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W6682331158, https://openalex.org/W3112908745, https://openalex.org/W2796656633, https://openalex.org/W4394645778, https://openalex.org/W2009274826, https://openalex.org/W2099741732, https://openalex.org/W2049633694, https://openalex.org/W3083461000, https://openalex.org/W2168602111, https://openalex.org/W6697018724, https://openalex.org/W2082662254, https://openalex.org/W1902027874, https://openalex.org/W6680012447, https://openalex.org/W4281478370, https://openalex.org/W2004419591, https://openalex.org/W2952214509, https://openalex.org/W2965166405, https://openalex.org/W2928432651, https://openalex.org/W3118432447, https://openalex.org/W1967937330, https://openalex.org/W2767770944, https://openalex.org/W3145087249, https://openalex.org/W2144359569, https://openalex.org/W2780582854, https://openalex.org/W2070050178, https://openalex.org/W2942610007, https://openalex.org/W2165695298, https://openalex.org/W4283718771, https://openalex.org/W4379378045, https://openalex.org/W2898039821, https://openalex.org/W2567948266, https://openalex.org/W4251279050, https://openalex.org/W4224470052, https://openalex.org/W2104298926, https://openalex.org/W3013579737, https://openalex.org/W2977079874, https://openalex.org/W2295124130, https://openalex.org/W1511986666, https://openalex.org/W2070135644, https://openalex.org/W4232513052, https://openalex.org/W2128521126, https://openalex.org/W4205894915, https://openalex.org/W2135029798, https://openalex.org/W2895381712, https://openalex.org/W2136468592, https://openalex.org/W2140318696, https://openalex.org/W2403286959 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 7, 73, 102, 144, 153, 160 |
| abstract_inverted_index.It | 25 |
| abstract_inverted_index.We | 99, 115, 140 |
| abstract_inverted_index.as | 38, 121 |
| abstract_inverted_index.at | 208 |
| abstract_inverted_index.be | 91 |
| abstract_inverted_index.by | 118 |
| abstract_inverted_index.in | 41, 58, 67, 78, 112, 198 |
| abstract_inverted_index.is | 6, 26, 71, 196, 206 |
| abstract_inverted_index.of | 44, 52, 61, 81, 105, 136, 148, 163, 181 |
| abstract_inverted_index.to | 12, 15, 84, 143 |
| abstract_inverted_index.we | 124 |
| abstract_inverted_index.NMF | 47, 96, 106 |
| abstract_inverted_index.and | 63, 152, 184, 203 |
| abstract_inverted_index.any | 135 |
| abstract_inverted_index.can | 125 |
| abstract_inverted_index.for | 49 |
| abstract_inverted_index.the | 29, 59, 79, 85, 95, 137, 164, 175, 179, 192, 199 |
| abstract_inverted_index.two | 50, 149 |
| abstract_inverted_index.— | 56 |
| abstract_inverted_index.Code | 205 |
| abstract_inverted_index.This | 88, 189 |
| abstract_inverted_index.also | 72 |
| abstract_inverted_index.bulk | 42 |
| abstract_inverted_index.cell | 39 |
| abstract_inverted_index.data | 14, 165 |
| abstract_inverted_index.each | 82 |
| abstract_inverted_index.from | 34, 130, 178 |
| abstract_inverted_index.many | 68 |
| abstract_inverted_index.show | 116 |
| abstract_inverted_index.such | 37 |
| abstract_inverted_index.that | 20, 107, 117, 157, 173, 195 |
| abstract_inverted_index.this | 110 |
| abstract_inverted_index.tool | 9 |
| abstract_inverted_index.when | 28 |
| abstract_inverted_index.(NMF) | 5 |
| abstract_inverted_index.apply | 141 |
| abstract_inverted_index.data. | 87 |
| abstract_inverted_index.mixed | 23, 86, 131, 200 |
| abstract_inverted_index.often | 10 |
| abstract_inverted_index.there | 70 |
| abstract_inverted_index.tumor | 176, 182 |
| abstract_inverted_index.types | 40, 51 |
| abstract_inverted_index.using | 94 |
| abstract_inverted_index.VarNMF | 142, 158, 168 |
| abstract_inverted_index.amount | 180 |
| abstract_inverted_index.better | 161 |
| abstract_inverted_index.cancer | 150 |
| abstract_inverted_index.cannot | 90 |
| abstract_inverted_index.latent | 18 |
| abstract_inverted_index.matrix | 3 |
| abstract_inverted_index.models | 109 |
| abstract_inverted_index.noise. | 65 |
| abstract_inverted_index.signal | 31 |
| abstract_inverted_index.source | 83, 113, 127, 171 |
| abstract_inverted_index.useful | 27 |
| abstract_inverted_index.Results | 98 |
| abstract_inverted_index.VarNMF, | 101 |
| abstract_inverted_index.applied | 11 |
| abstract_inverted_index.between | 54, 76 |
| abstract_inverted_index.cohort, | 155 |
| abstract_inverted_index.cohorts | 151 |
| abstract_inverted_index.dataset | 147 |
| abstract_inverted_index.disease | 187 |
| abstract_inverted_index.genomic | 13 |
| abstract_inverted_index.healthy | 154 |
| abstract_inverted_index.modeled | 93 |
| abstract_inverted_index.present | 100 |
| abstract_inverted_index.recover | 126 |
| abstract_inverted_index.samples | 55, 77, 132 |
| abstract_inverted_index.sources | 62, 120, 138 |
| abstract_inverted_index.tissue. | 46 |
| abstract_inverted_index.values. | 114 |
| abstract_inverted_index.without | 133 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.ChIP-seq | 146 |
| abstract_inverted_index.However, | 66 |
| abstract_inverted_index.accounts | 48 |
| abstract_inverted_index.combines | 32 |
| abstract_inverted_index.decouple | 174 |
| abstract_inverted_index.directly | 129 |
| abstract_inverted_index.extracts | 169 |
| abstract_inverted_index.identify | 16, 185 |
| abstract_inverted_index.linearly | 22 |
| abstract_inverted_index.modeling | 119 |
| abstract_inverted_index.multiple | 35 |
| abstract_inverted_index.obscured | 197 |
| abstract_inverted_index.observed | 30 |
| abstract_inverted_index.powerful | 8 |
| abstract_inverted_index.provides | 159 |
| abstract_inverted_index.samples. | 24, 201 |
| abstract_inverted_index.sources, | 36 |
| abstract_inverted_index.Moreover, | 167 |
| abstract_inverted_index.available | 207 |
| abstract_inverted_index.cell-free | 145 |
| abstract_inverted_index.directly. | 139 |
| abstract_inverted_index.extension | 104 |
| abstract_inverted_index.observing | 134 |
| abstract_inverted_index.settings, | 69 |
| abstract_inverted_index.variation | 53, 75, 89, 111, 128 |
| abstract_inverted_index.Motivation | 1 |
| abstract_inverted_index.accurately | 92 |
| abstract_inverted_index.behaviors. | 188 |
| abstract_inverted_index.components | 19 |
| abstract_inverted_index.constitute | 21 |
| abstract_inverted_index.estimation | 162 |
| abstract_inverted_index.explicitly | 108 |
| abstract_inverted_index.framework. | 97 |
| abstract_inverted_index.highlights | 191 |
| abstract_inverted_index.disparities | 57 |
| abstract_inverted_index.inter-tumor | 193 |
| abstract_inverted_index.non-trivial | 74 |
| abstract_inverted_index.observation | 64 |
| abstract_inverted_index.proportions | 60 |
| abstract_inverted_index.variability | 194 |
| abstract_inverted_index.Availability | 202 |
| abstract_inverted_index.Non-negative | 2 |
| abstract_inverted_index.contribution | 80 |
| abstract_inverted_index.measurements | 43 |
| abstract_inverted_index.non-negative | 17, 122 |
| abstract_inverted_index.contribution, | 183 |
| abstract_inverted_index.contributions | 33 |
| abstract_inverted_index.decomposition | 190 |
| abstract_inverted_index.demonstrating | 156 |
| abstract_inverted_index.distribution. | 166 |
| abstract_inverted_index.distributions | 172 |
| abstract_inverted_index.factorization | 4 |
| abstract_inverted_index.heterogeneous | 45 |
| abstract_inverted_index.probabilistic | 103 |
| abstract_inverted_index.distributions, | 123 |
| abstract_inverted_index.implementation | 204 |
| abstract_inverted_index.characteristics | 177 |
| abstract_inverted_index.patient-specific | 186 |
| abstract_inverted_index.cancer-associated | 170 |
| abstract_inverted_index.https://github.com/Nir-Friedman-Lab/VarNMF. | 209 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.7457439 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |