Vector quantization using k ‐means clustering neural network Article Swipe
Vector Quantization (VQ) is a clustering problem in the fields of signal processing, source coding, information theory etc. Taking advantage of recent advances in the field of deep neural networks, this paper investigates the performance between VQ clustering problems and deep neural networks. A k ‐means‐based deep network architecture for VQ is presented to solve clustering problems. By applying the deep learning implementation of convergence optimization, a clustering neural network (algorithm) for the purpose of VQ is proposed. In practice, the proposed network quantifies the vectors over a set of stacked neural layers, overcoming the exponential complexity problem of VQ methods by trainable parameters. Experiments show that the work can improve the results without human intervention, and outperforms traditional clustering methods modified for VQ.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/ell2.12758
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758
- OA Status
- gold
- Cited By
- 10
- References
- 18
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361275200
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361275200Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/ell2.12758Digital Object Identifier
- Title
-
Vector quantization using k ‐means clustering neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-29Full publication date if available
- Authors
-
Sio‐Kei Im, Ka‐Hou ChanList of authors in order
- Landing page
-
https://doi.org/10.1049/ell2.12758Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758Direct OA link when available
- Concepts
-
Vector quantization, Cluster analysis, Artificial intelligence, Learning vector quantization, Computer science, Artificial neural network, Pattern recognition (psychology), Neural gas, Quantization (signal processing), Algorithm, Time delay neural networkTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 4, 2023: 2Per-year citation counts (last 5 years)
- References (count)
-
18Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361275200 |
|---|---|
| doi | https://doi.org/10.1049/ell2.12758 |
| ids.doi | https://doi.org/10.1049/ell2.12758 |
| ids.openalex | https://openalex.org/W4361275200 |
| fwci | 1.8196834 |
| type | article |
| title | Vector quantization using k ‐means clustering neural network |
| biblio.issue | 7 |
| biblio.volume | 59 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Data Compression Techniques |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9957000017166138 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T12389 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9830999970436096 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Infrared Target Detection Methodologies |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C199833920 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8333455324172974 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q612536 |
| concepts[0].display_name | Vector quantization |
| concepts[1].id | https://openalex.org/C73555534 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8005591630935669 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[1].display_name | Cluster analysis |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6499664187431335 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C40567965 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6183697581291199 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1820283 |
| concepts[3].display_name | Learning vector quantization |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.609698474407196 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5895848274230957 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5782093405723572 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C90322556 |
| concepts[7].level | 4 |
| concepts[7].score | 0.5015015602111816 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1981169 |
| concepts[7].display_name | Neural gas |
| concepts[8].id | https://openalex.org/C28855332 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4651561379432678 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q198099 |
| concepts[8].display_name | Quantization (signal processing) |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3199014663696289 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C175202392 |
| concepts[10].level | 3 |
| concepts[10].score | 0.2866401672363281 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2434543 |
| concepts[10].display_name | Time delay neural network |
| keywords[0].id | https://openalex.org/keywords/vector-quantization |
| keywords[0].score | 0.8333455324172974 |
| keywords[0].display_name | Vector quantization |
| keywords[1].id | https://openalex.org/keywords/cluster-analysis |
| keywords[1].score | 0.8005591630935669 |
| keywords[1].display_name | Cluster analysis |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6499664187431335 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/learning-vector-quantization |
| keywords[3].score | 0.6183697581291199 |
| keywords[3].display_name | Learning vector quantization |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.609698474407196 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5895848274230957 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.5782093405723572 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/neural-gas |
| keywords[7].score | 0.5015015602111816 |
| keywords[7].display_name | Neural gas |
| keywords[8].id | https://openalex.org/keywords/quantization |
| keywords[8].score | 0.4651561379432678 |
| keywords[8].display_name | Quantization (signal processing) |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3199014663696289 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/time-delay-neural-network |
| keywords[10].score | 0.2866401672363281 |
| keywords[10].display_name | Time delay neural network |
| language | en |
| locations[0].id | doi:10.1049/ell2.12758 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S149016011 |
| locations[0].source.issn | 0013-5194, 1350-911X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0013-5194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Electronics Letters |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Electronics Letters |
| locations[0].landing_page_url | https://doi.org/10.1049/ell2.12758 |
| locations[1].id | pmh:oai:doaj.org/article:39ba9fbb2e93437aa234f71c73ad604e |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Electronics Letters, Vol 59, Iss 7, Pp n/a-n/a (2023) |
| locations[1].landing_page_url | https://doaj.org/article/39ba9fbb2e93437aa234f71c73ad604e |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5022394682 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5599-4300 |
| authorships[0].author.display_name | Sio‐Kei Im |
| authorships[0].countries | MO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I49835588 |
| authorships[0].affiliations[0].raw_affiliation_string | Macao Polytechnic University, Macau, China |
| authorships[0].institutions[0].id | https://openalex.org/I49835588 |
| authorships[0].institutions[0].ror | https://ror.org/02sf5td35 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I49835588 |
| authorships[0].institutions[0].country_code | MO |
| authorships[0].institutions[0].display_name | Macao Polytechnic University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sio‐Kei Im |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Macao Polytechnic University, Macau, China |
| authorships[1].author.id | https://openalex.org/A5061396090 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0183-0685 |
| authorships[1].author.display_name | Ka‐Hou Chan |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].raw_affiliation_string | Email: [email protected] |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I49835588 |
| authorships[1].affiliations[1].raw_affiliation_string | Faculty of Applied Sciences, Macao Polytechnic University, Macau, China |
| authorships[1].institutions[0].id | https://openalex.org/I49835588 |
| authorships[1].institutions[0].ror | https://ror.org/02sf5td35 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I49835588 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | Macao Polytechnic University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ka‐Hou Chan |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Email: [email protected], Faculty of Applied Sciences, Macao Polytechnic University, Macau, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-03-31T00:00:00 |
| display_name | Vector quantization using k ‐means clustering neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Data Compression Techniques |
| related_works | https://openalex.org/W2100968651, https://openalex.org/W4243803532, https://openalex.org/W2352648934, https://openalex.org/W2378212145, https://openalex.org/W116978123, https://openalex.org/W3012423201, https://openalex.org/W1805748654, https://openalex.org/W3148658660, https://openalex.org/W1530767163, https://openalex.org/W2475089102 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/ell2.12758 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S149016011 |
| best_oa_location.source.issn | 0013-5194, 1350-911X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0013-5194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Electronics Letters |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Electronics Letters |
| best_oa_location.landing_page_url | https://doi.org/10.1049/ell2.12758 |
| primary_location.id | doi:10.1049/ell2.12758 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S149016011 |
| primary_location.source.issn | 0013-5194, 1350-911X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0013-5194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Electronics Letters |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/ell2.12758 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Electronics Letters |
| primary_location.landing_page_url | https://doi.org/10.1049/ell2.12758 |
| publication_date | 2023-03-29 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2912267671, https://openalex.org/W3089301520, https://openalex.org/W3025751404, https://openalex.org/W2888523397, https://openalex.org/W2900996853, https://openalex.org/W2948062364, https://openalex.org/W1534762669, https://openalex.org/W3043476515, https://openalex.org/W3000853282, https://openalex.org/W3157259700, https://openalex.org/W3019913914, https://openalex.org/W2949488362, https://openalex.org/W2886793380, https://openalex.org/W3118451526, https://openalex.org/W3202774381, https://openalex.org/W2130473611, https://openalex.org/W3196545708, https://openalex.org/W2994140543 |
| referenced_works_count | 18 |
| abstract_inverted_index.A | 44 |
| abstract_inverted_index.a | 5, 67, 88 |
| abstract_inverted_index.k | 45 |
| abstract_inverted_index.By | 58 |
| abstract_inverted_index.In | 79 |
| abstract_inverted_index.VQ | 37, 51, 76, 100 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 8, 24 |
| abstract_inverted_index.is | 4, 52, 77 |
| abstract_inverted_index.of | 11, 21, 27, 64, 75, 90, 99 |
| abstract_inverted_index.to | 54 |
| abstract_inverted_index.VQ. | 124 |
| abstract_inverted_index.and | 40, 117 |
| abstract_inverted_index.can | 110 |
| abstract_inverted_index.for | 50, 72, 123 |
| abstract_inverted_index.set | 89 |
| abstract_inverted_index.the | 9, 25, 34, 60, 73, 81, 85, 95, 108, 112 |
| abstract_inverted_index.(VQ) | 3 |
| abstract_inverted_index.deep | 28, 41, 47, 61 |
| abstract_inverted_index.etc. | 18 |
| abstract_inverted_index.over | 87 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.that | 107 |
| abstract_inverted_index.this | 31 |
| abstract_inverted_index.work | 109 |
| abstract_inverted_index.field | 26 |
| abstract_inverted_index.human | 115 |
| abstract_inverted_index.paper | 32 |
| abstract_inverted_index.solve | 55 |
| abstract_inverted_index.Taking | 19 |
| abstract_inverted_index.Vector | 1 |
| abstract_inverted_index.fields | 10 |
| abstract_inverted_index.neural | 29, 42, 69, 92 |
| abstract_inverted_index.recent | 22 |
| abstract_inverted_index.signal | 12 |
| abstract_inverted_index.source | 14 |
| abstract_inverted_index.theory | 17 |
| abstract_inverted_index.between | 36 |
| abstract_inverted_index.coding, | 15 |
| abstract_inverted_index.improve | 111 |
| abstract_inverted_index.layers, | 93 |
| abstract_inverted_index.methods | 101, 121 |
| abstract_inverted_index.network | 48, 70, 83 |
| abstract_inverted_index.problem | 7, 98 |
| abstract_inverted_index.purpose | 74 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.stacked | 91 |
| abstract_inverted_index.vectors | 86 |
| abstract_inverted_index.without | 114 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.advances | 23 |
| abstract_inverted_index.applying | 59 |
| abstract_inverted_index.learning | 62 |
| abstract_inverted_index.modified | 122 |
| abstract_inverted_index.problems | 39 |
| abstract_inverted_index.proposed | 82 |
| abstract_inverted_index.advantage | 20 |
| abstract_inverted_index.networks, | 30 |
| abstract_inverted_index.networks. | 43 |
| abstract_inverted_index.practice, | 80 |
| abstract_inverted_index.presented | 53 |
| abstract_inverted_index.problems. | 57 |
| abstract_inverted_index.proposed. | 78 |
| abstract_inverted_index.trainable | 103 |
| abstract_inverted_index.clustering | 6, 38, 56, 68, 120 |
| abstract_inverted_index.complexity | 97 |
| abstract_inverted_index.overcoming | 94 |
| abstract_inverted_index.quantifies | 84 |
| abstract_inverted_index.(algorithm) | 71 |
| abstract_inverted_index.Experiments | 105 |
| abstract_inverted_index.convergence | 65 |
| abstract_inverted_index.exponential | 96 |
| abstract_inverted_index.information | 16 |
| abstract_inverted_index.outperforms | 118 |
| abstract_inverted_index.parameters. | 104 |
| abstract_inverted_index.performance | 35 |
| abstract_inverted_index.processing, | 13 |
| abstract_inverted_index.traditional | 119 |
| abstract_inverted_index.Quantization | 2 |
| abstract_inverted_index.architecture | 49 |
| abstract_inverted_index.investigates | 33 |
| abstract_inverted_index.intervention, | 116 |
| abstract_inverted_index.optimization, | 66 |
| abstract_inverted_index.implementation | 63 |
| abstract_inverted_index.‐means‐based | 46 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5061396090 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I49835588 |
| citation_normalized_percentile.value | 0.83803267 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |