Versatile Locomotion Skills for Hexapod Robots Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.10628
Hexapod robots are potentially suitable for carrying out tasks in cluttered environments since they are stable, compact, and light weight. They also have multi-joint legs and variable height bodies that make them good candidates for tasks such as stairs climbing and squeezing under objects in a typical home environment or an attic. Expanding on our previous work on joist climbing in attics, we train a legged hexapod equipped with a depth camera and visual inertial odometry (VIO) to perform three tasks: climbing stairs, avoiding obstacles, and squeezing under obstacles such as a table. Our policies are trained with simulation data only and can be deployed on lowcost hardware not requiring real-time joint state feedback. We train our model in a teacher-student model with 2 phases: In phase 1, we use reinforcement learning with access to privileged information such as height maps and joint feedback. In phase 2, we use supervised learning to distill the model into one with access to only onboard observations, consisting of egocentric depth images and robot pose captured by a tracking VIO camera. By manipulating available privileged information, constructing simulation terrains, and refining reward functions during phase 1 training, we are able to train the robots with skills that are robust in non-ideal physical environments. We demonstrate successful sim-to-real transfer and achieve high success rates across all three tasks in physical experiments.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.10628
- https://arxiv.org/pdf/2412.10628
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405468528
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405468528Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.10628Digital Object Identifier
- Title
-
Versatile Locomotion Skills for Hexapod RobotsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-14Full publication date if available
- Authors
-
Ting Qu, Dichen Li, Avideh Zakhor, Wenhao Yu, Tingnan ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.10628Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.10628Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.10628Direct OA link when available
- Concepts
-
Hexapod, Robot, Computer science, Human–computer interaction, Physical medicine and rehabilitation, Psychology, Artificial intelligence, MedicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405468528 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.10628 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.10628 |
| ids.openalex | https://openalex.org/W4405468528 |
| fwci | |
| type | preprint |
| title | Versatile Locomotion Skills for Hexapod Robots |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10879 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Robotic Locomotion and Control |
| topics[1].id | https://openalex.org/T12784 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Modular Robots and Swarm Intelligence |
| topics[2].id | https://openalex.org/T10571 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9954000115394592 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Robotic Mechanisms and Dynamics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C136434205 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9927380681037903 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3437269 |
| concepts[0].display_name | Hexapod |
| concepts[1].id | https://openalex.org/C90509273 |
| concepts[1].level | 2 |
| concepts[1].score | 0.669033408164978 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11012 |
| concepts[1].display_name | Robot |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.4548616111278534 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C107457646 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4426828622817993 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[3].display_name | Human–computer interaction |
| concepts[4].id | https://openalex.org/C99508421 |
| concepts[4].level | 1 |
| concepts[4].score | 0.38578519225120544 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[4].display_name | Physical medicine and rehabilitation |
| concepts[5].id | https://openalex.org/C15744967 |
| concepts[5].level | 0 |
| concepts[5].score | 0.37775182723999023 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[5].display_name | Psychology |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.302651047706604 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.09949323534965515 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| keywords[0].id | https://openalex.org/keywords/hexapod |
| keywords[0].score | 0.9927380681037903 |
| keywords[0].display_name | Hexapod |
| keywords[1].id | https://openalex.org/keywords/robot |
| keywords[1].score | 0.669033408164978 |
| keywords[1].display_name | Robot |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.4548616111278534 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[3].score | 0.4426828622817993 |
| keywords[3].display_name | Human–computer interaction |
| keywords[4].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[4].score | 0.38578519225120544 |
| keywords[4].display_name | Physical medicine and rehabilitation |
| keywords[5].id | https://openalex.org/keywords/psychology |
| keywords[5].score | 0.37775182723999023 |
| keywords[5].display_name | Psychology |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.302651047706604 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.09949323534965515 |
| keywords[7].display_name | Medicine |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.10628 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.10628 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.10628 |
| locations[1].id | doi:10.48550/arxiv.2412.10628 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.10628 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5021504878 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1012-2856 |
| authorships[0].author.display_name | Ting Qu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qu, Tomson |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5103057773 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6459-4878 |
| authorships[1].author.display_name | Dichen Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Dichen |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008034417 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4770-6353 |
| authorships[2].author.display_name | Avideh Zakhor |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zakhor, Avideh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101775413 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6052-0839 |
| authorships[3].author.display_name | Wenhao Yu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yu, Wenhao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5086928709 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Tingnan Zhang |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zhang, Tingnan |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.10628 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Versatile Locomotion Skills for Hexapod Robots |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10879 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Robotic Locomotion and Control |
| related_works | https://openalex.org/W2146302595, https://openalex.org/W613729187, https://openalex.org/W138543751, https://openalex.org/W2789574804, https://openalex.org/W2114803124, https://openalex.org/W2063353256, https://openalex.org/W123722128, https://openalex.org/W4390269031, https://openalex.org/W4389787393, https://openalex.org/W132946187 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.10628 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.10628 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.10628 |
| primary_location.id | pmh:oai:arXiv.org:2412.10628 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.10628 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.10628 |
| publication_date | 2024-12-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 191 |
| abstract_inverted_index.2 | 123 |
| abstract_inverted_index.a | 45, 64, 69, 91, 119, 173 |
| abstract_inverted_index.1, | 127 |
| abstract_inverted_index.2, | 146 |
| abstract_inverted_index.By | 177 |
| abstract_inverted_index.In | 125, 144 |
| abstract_inverted_index.We | 114, 209 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.as | 37, 90, 138 |
| abstract_inverted_index.be | 103 |
| abstract_inverted_index.by | 172 |
| abstract_inverted_index.in | 9, 44, 60, 118, 205, 223 |
| abstract_inverted_index.of | 164 |
| abstract_inverted_index.on | 53, 57, 105 |
| abstract_inverted_index.or | 49 |
| abstract_inverted_index.to | 77, 134, 151, 159, 196 |
| abstract_inverted_index.we | 62, 128, 147, 193 |
| abstract_inverted_index.Our | 93 |
| abstract_inverted_index.VIO | 175 |
| abstract_inverted_index.all | 220 |
| abstract_inverted_index.and | 17, 25, 40, 72, 85, 101, 141, 168, 185, 214 |
| abstract_inverted_index.are | 2, 14, 95, 194, 203 |
| abstract_inverted_index.can | 102 |
| abstract_inverted_index.for | 5, 34 |
| abstract_inverted_index.not | 108 |
| abstract_inverted_index.one | 156 |
| abstract_inverted_index.our | 54, 116 |
| abstract_inverted_index.out | 7 |
| abstract_inverted_index.the | 153, 198 |
| abstract_inverted_index.use | 129, 148 |
| abstract_inverted_index.They | 20 |
| abstract_inverted_index.able | 195 |
| abstract_inverted_index.also | 21 |
| abstract_inverted_index.data | 99 |
| abstract_inverted_index.good | 32 |
| abstract_inverted_index.have | 22 |
| abstract_inverted_index.high | 216 |
| abstract_inverted_index.home | 47 |
| abstract_inverted_index.into | 155 |
| abstract_inverted_index.legs | 24 |
| abstract_inverted_index.make | 30 |
| abstract_inverted_index.maps | 140 |
| abstract_inverted_index.only | 100, 160 |
| abstract_inverted_index.pose | 170 |
| abstract_inverted_index.such | 36, 89, 137 |
| abstract_inverted_index.that | 29, 202 |
| abstract_inverted_index.them | 31 |
| abstract_inverted_index.they | 13 |
| abstract_inverted_index.with | 68, 97, 122, 132, 157, 200 |
| abstract_inverted_index.work | 56 |
| abstract_inverted_index.(VIO) | 76 |
| abstract_inverted_index.depth | 70, 166 |
| abstract_inverted_index.joint | 111, 142 |
| abstract_inverted_index.joist | 58 |
| abstract_inverted_index.light | 18 |
| abstract_inverted_index.model | 117, 121, 154 |
| abstract_inverted_index.phase | 126, 145, 190 |
| abstract_inverted_index.rates | 218 |
| abstract_inverted_index.robot | 169 |
| abstract_inverted_index.since | 12 |
| abstract_inverted_index.state | 112 |
| abstract_inverted_index.tasks | 8, 35, 222 |
| abstract_inverted_index.three | 79, 221 |
| abstract_inverted_index.train | 63, 115, 197 |
| abstract_inverted_index.under | 42, 87 |
| abstract_inverted_index.access | 133, 158 |
| abstract_inverted_index.across | 219 |
| abstract_inverted_index.attic. | 51 |
| abstract_inverted_index.bodies | 28 |
| abstract_inverted_index.camera | 71 |
| abstract_inverted_index.during | 189 |
| abstract_inverted_index.height | 27, 139 |
| abstract_inverted_index.images | 167 |
| abstract_inverted_index.legged | 65 |
| abstract_inverted_index.reward | 187 |
| abstract_inverted_index.robots | 1, 199 |
| abstract_inverted_index.robust | 204 |
| abstract_inverted_index.skills | 201 |
| abstract_inverted_index.stairs | 38 |
| abstract_inverted_index.table. | 92 |
| abstract_inverted_index.tasks: | 80 |
| abstract_inverted_index.visual | 73 |
| abstract_inverted_index.Hexapod | 0 |
| abstract_inverted_index.achieve | 215 |
| abstract_inverted_index.attics, | 61 |
| abstract_inverted_index.camera. | 176 |
| abstract_inverted_index.distill | 152 |
| abstract_inverted_index.hexapod | 66 |
| abstract_inverted_index.lowcost | 106 |
| abstract_inverted_index.objects | 43 |
| abstract_inverted_index.onboard | 161 |
| abstract_inverted_index.perform | 78 |
| abstract_inverted_index.phases: | 124 |
| abstract_inverted_index.stable, | 15 |
| abstract_inverted_index.stairs, | 82 |
| abstract_inverted_index.success | 217 |
| abstract_inverted_index.trained | 96 |
| abstract_inverted_index.typical | 46 |
| abstract_inverted_index.weight. | 19 |
| abstract_inverted_index.avoiding | 83 |
| abstract_inverted_index.captured | 171 |
| abstract_inverted_index.carrying | 6 |
| abstract_inverted_index.climbing | 39, 59, 81 |
| abstract_inverted_index.compact, | 16 |
| abstract_inverted_index.deployed | 104 |
| abstract_inverted_index.equipped | 67 |
| abstract_inverted_index.hardware | 107 |
| abstract_inverted_index.inertial | 74 |
| abstract_inverted_index.learning | 131, 150 |
| abstract_inverted_index.odometry | 75 |
| abstract_inverted_index.physical | 207, 224 |
| abstract_inverted_index.policies | 94 |
| abstract_inverted_index.previous | 55 |
| abstract_inverted_index.refining | 186 |
| abstract_inverted_index.suitable | 4 |
| abstract_inverted_index.tracking | 174 |
| abstract_inverted_index.transfer | 213 |
| abstract_inverted_index.variable | 26 |
| abstract_inverted_index.Expanding | 52 |
| abstract_inverted_index.available | 179 |
| abstract_inverted_index.cluttered | 10 |
| abstract_inverted_index.feedback. | 113, 143 |
| abstract_inverted_index.functions | 188 |
| abstract_inverted_index.non-ideal | 206 |
| abstract_inverted_index.obstacles | 88 |
| abstract_inverted_index.real-time | 110 |
| abstract_inverted_index.requiring | 109 |
| abstract_inverted_index.squeezing | 41, 86 |
| abstract_inverted_index.terrains, | 184 |
| abstract_inverted_index.training, | 192 |
| abstract_inverted_index.candidates | 33 |
| abstract_inverted_index.consisting | 163 |
| abstract_inverted_index.egocentric | 165 |
| abstract_inverted_index.obstacles, | 84 |
| abstract_inverted_index.privileged | 135, 180 |
| abstract_inverted_index.simulation | 98, 183 |
| abstract_inverted_index.successful | 211 |
| abstract_inverted_index.supervised | 149 |
| abstract_inverted_index.demonstrate | 210 |
| abstract_inverted_index.environment | 48 |
| abstract_inverted_index.information | 136 |
| abstract_inverted_index.multi-joint | 23 |
| abstract_inverted_index.potentially | 3 |
| abstract_inverted_index.sim-to-real | 212 |
| abstract_inverted_index.constructing | 182 |
| abstract_inverted_index.environments | 11 |
| abstract_inverted_index.experiments. | 225 |
| abstract_inverted_index.information, | 181 |
| abstract_inverted_index.manipulating | 178 |
| abstract_inverted_index.environments. | 208 |
| abstract_inverted_index.observations, | 162 |
| abstract_inverted_index.reinforcement | 130 |
| abstract_inverted_index.teacher-student | 120 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile |