Vibration based condition monitoring of spur gear using signal processing and machine learning Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-4819232/v1
The objective of this work is to diagnose the fault of spur gear based on vibration analysis using signal processing techniques and machine learning (ML) algorithms. This paper describes two approaches of signal processing techniques, which are time-domain and frequency domain. The proposed method investigated that both approaches of signal processing are suitable for fault diagnosis effectively and has been improved by analyzing from both sides. Variation of noise level during the meshing of gears has also been measured. Statistical features extracted from recorded vibration signals using time-domain approach for healthy and faulty spur gear conditions were used as input to ML algorithms The outcome of this research validated through machine learning approaches such as the J48 algorithm, which is 97.08% classification accuracy. It has been observed that for better monitoring of the health status of the gear, both sides' signals and noise levels must be analyzed. The outcome of this work is an important consideration for fault diagnosis of spur gear as well as bearings and shaft misalignment.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://doi.org/10.21203/rs.3.rs-4819232/v1
- OA Status
- gold
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4402854274
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4402854274Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-4819232/v1Digital Object Identifier
- Title
-
Vibration based condition monitoring of spur gear using signal processing and machine learningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-26Full publication date if available
- Authors
-
Badr Saad T. Alkahtani, Manoj Kumar Gangwar, Chitresh NayakList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-4819232/v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.21203/rs.3.rs-4819232/v1Direct OA link when available
- Concepts
-
Spur gear, Vibration, SIGNAL (programming language), Spur, Signal processing, Computer science, Structural engineering, Acoustics, Mechanical engineering, Engineering, Physics, Digital signal processing, Computer hardware, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4402854274 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-4819232/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-4819232/v1 |
| ids.openalex | https://openalex.org/W4402854274 |
| fwci | 0.0 |
| type | preprint |
| title | Vibration based condition monitoring of spur gear using signal processing and machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11062 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Gear and Bearing Dynamics Analysis |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T10188 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | Advanced machining processes and optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2992072310 |
| concepts[0].level | 2 |
| concepts[0].score | 0.824589729309082 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7581549 |
| concepts[0].display_name | Spur gear |
| concepts[1].id | https://openalex.org/C198394728 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6700873374938965 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3695508 |
| concepts[1].display_name | Vibration |
| concepts[2].id | https://openalex.org/C2779843651 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5700123310089111 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[2].display_name | SIGNAL (programming language) |
| concepts[3].id | https://openalex.org/C2779821383 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5303030014038086 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7581537 |
| concepts[3].display_name | Spur |
| concepts[4].id | https://openalex.org/C104267543 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5171077251434326 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q208163 |
| concepts[4].display_name | Signal processing |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4893926680088043 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C66938386 |
| concepts[6].level | 1 |
| concepts[6].score | 0.38339778780937195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[6].display_name | Structural engineering |
| concepts[7].id | https://openalex.org/C24890656 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36479103565216064 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[7].display_name | Acoustics |
| concepts[8].id | https://openalex.org/C78519656 |
| concepts[8].level | 1 |
| concepts[8].score | 0.33267319202423096 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[8].display_name | Mechanical engineering |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3152974843978882 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.12066042423248291 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C84462506 |
| concepts[11].level | 2 |
| concepts[11].score | 0.11072111129760742 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q173142 |
| concepts[11].display_name | Digital signal processing |
| concepts[12].id | https://openalex.org/C9390403 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09839925169944763 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3966 |
| concepts[12].display_name | Computer hardware |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/spur-gear |
| keywords[0].score | 0.824589729309082 |
| keywords[0].display_name | Spur gear |
| keywords[1].id | https://openalex.org/keywords/vibration |
| keywords[1].score | 0.6700873374938965 |
| keywords[1].display_name | Vibration |
| keywords[2].id | https://openalex.org/keywords/signal |
| keywords[2].score | 0.5700123310089111 |
| keywords[2].display_name | SIGNAL (programming language) |
| keywords[3].id | https://openalex.org/keywords/spur |
| keywords[3].score | 0.5303030014038086 |
| keywords[3].display_name | Spur |
| keywords[4].id | https://openalex.org/keywords/signal-processing |
| keywords[4].score | 0.5171077251434326 |
| keywords[4].display_name | Signal processing |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4893926680088043 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/structural-engineering |
| keywords[6].score | 0.38339778780937195 |
| keywords[6].display_name | Structural engineering |
| keywords[7].id | https://openalex.org/keywords/acoustics |
| keywords[7].score | 0.36479103565216064 |
| keywords[7].display_name | Acoustics |
| keywords[8].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[8].score | 0.33267319202423096 |
| keywords[8].display_name | Mechanical engineering |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.3152974843978882 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.12066042423248291 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/digital-signal-processing |
| keywords[11].score | 0.11072111129760742 |
| keywords[11].display_name | Digital signal processing |
| keywords[12].id | https://openalex.org/keywords/computer-hardware |
| keywords[12].score | 0.09839925169944763 |
| keywords[12].display_name | Computer hardware |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-4819232/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://doi.org/10.21203/rs.3.rs-4819232/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5066887622 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2864-6888 |
| authorships[0].author.display_name | Badr Saad T. Alkahtani |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[0].affiliations[0].raw_affiliation_string | King Saud University |
| authorships[0].institutions[0].id | https://openalex.org/I28022161 |
| authorships[0].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Saud University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Badr Saad T. Alkahtani |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | King Saud University |
| authorships[1].author.id | https://openalex.org/A5111341511 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Manoj Kumar Gangwar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[1].affiliations[0].raw_affiliation_string | Medi-caps University |
| authorships[1].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[1].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Medi-Caps University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manoj Kumar Gangwar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Medi-caps University |
| authorships[2].author.id | https://openalex.org/A5044233989 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4444-516X |
| authorships[2].author.display_name | Chitresh Nayak |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210119567 |
| authorships[2].affiliations[0].raw_affiliation_string | Medi-caps University |
| authorships[2].institutions[0].id | https://openalex.org/I4210119567 |
| authorships[2].institutions[0].ror | https://ror.org/02svf5f06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210119567 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Medi-Caps University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Chitresh Nayak |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Medi-caps University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.21203/rs.3.rs-4819232/v1 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Vibration based condition monitoring of spur gear using signal processing and machine learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11062 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Gear and Bearing Dynamics Analysis |
| related_works | https://openalex.org/W150051781, https://openalex.org/W2354977589, https://openalex.org/W2691645281, https://openalex.org/W2588130900, https://openalex.org/W3007019011, https://openalex.org/W2330288510, https://openalex.org/W2613240747, https://openalex.org/W3193725011, https://openalex.org/W958908473, https://openalex.org/W3163273250 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-4819232/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://doi.org/10.21203/rs.3.rs-4819232/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-4819232/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://doi.org/10.21203/rs.3.rs-4819232/v1 |
| publication_date | 2024-09-26 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4229027444, https://openalex.org/W4393152046, https://openalex.org/W4388966155, https://openalex.org/W2966675498, https://openalex.org/W2810431965, https://openalex.org/W2898426176, https://openalex.org/W3143954825, https://openalex.org/W4308653690, https://openalex.org/W4220973993, https://openalex.org/W4237687730, https://openalex.org/W4315781543, https://openalex.org/W2565196380, https://openalex.org/W4391543215, https://openalex.org/W4282962530, https://openalex.org/W4285105185, https://openalex.org/W4393170699, https://openalex.org/W4381510467, https://openalex.org/W2943168901, https://openalex.org/W2954709958, https://openalex.org/W2931672078, https://openalex.org/W2297974071, https://openalex.org/W4285727466, https://openalex.org/W4317042718 |
| referenced_works_count | 23 |
| abstract_inverted_index.It | 124 |
| abstract_inverted_index.ML | 102 |
| abstract_inverted_index.an | 154 |
| abstract_inverted_index.as | 99, 115, 163, 165 |
| abstract_inverted_index.be | 146 |
| abstract_inverted_index.by | 62 |
| abstract_inverted_index.is | 6, 120, 153 |
| abstract_inverted_index.of | 3, 11, 32, 49, 68, 74, 106, 132, 136, 150, 160 |
| abstract_inverted_index.on | 15 |
| abstract_inverted_index.to | 7, 101 |
| abstract_inverted_index.J48 | 117 |
| abstract_inverted_index.The | 1, 42, 104, 148 |
| abstract_inverted_index.and | 22, 39, 58, 92, 142, 167 |
| abstract_inverted_index.are | 37, 52 |
| abstract_inverted_index.for | 54, 90, 129, 157 |
| abstract_inverted_index.has | 59, 76, 125 |
| abstract_inverted_index.the | 9, 72, 116, 133, 137 |
| abstract_inverted_index.two | 30 |
| abstract_inverted_index.(ML) | 25 |
| abstract_inverted_index.This | 27 |
| abstract_inverted_index.also | 77 |
| abstract_inverted_index.been | 60, 78, 126 |
| abstract_inverted_index.both | 47, 65, 139 |
| abstract_inverted_index.from | 64, 83 |
| abstract_inverted_index.gear | 13, 95, 162 |
| abstract_inverted_index.must | 145 |
| abstract_inverted_index.spur | 12, 94, 161 |
| abstract_inverted_index.such | 114 |
| abstract_inverted_index.that | 46, 128 |
| abstract_inverted_index.this | 4, 107, 151 |
| abstract_inverted_index.used | 98 |
| abstract_inverted_index.well | 164 |
| abstract_inverted_index.were | 97 |
| abstract_inverted_index.work | 5, 152 |
| abstract_inverted_index.based | 14 |
| abstract_inverted_index.fault | 10, 55, 158 |
| abstract_inverted_index.gear, | 138 |
| abstract_inverted_index.gears | 75 |
| abstract_inverted_index.input | 100 |
| abstract_inverted_index.level | 70 |
| abstract_inverted_index.noise | 69, 143 |
| abstract_inverted_index.paper | 28 |
| abstract_inverted_index.shaft | 168 |
| abstract_inverted_index.using | 18, 87 |
| abstract_inverted_index.which | 36, 119 |
| abstract_inverted_index.97.08% | 121 |
| abstract_inverted_index.better | 130 |
| abstract_inverted_index.during | 71 |
| abstract_inverted_index.faulty | 93 |
| abstract_inverted_index.health | 134 |
| abstract_inverted_index.levels | 144 |
| abstract_inverted_index.method | 44 |
| abstract_inverted_index.sides' | 140 |
| abstract_inverted_index.sides. | 66 |
| abstract_inverted_index.signal | 19, 33, 50 |
| abstract_inverted_index.status | 135 |
| abstract_inverted_index.domain. | 41 |
| abstract_inverted_index.healthy | 91 |
| abstract_inverted_index.machine | 23, 111 |
| abstract_inverted_index.meshing | 73 |
| abstract_inverted_index.outcome | 105, 149 |
| abstract_inverted_index.signals | 86, 141 |
| abstract_inverted_index.through | 110 |
| abstract_inverted_index.analysis | 17 |
| abstract_inverted_index.approach | 89 |
| abstract_inverted_index.bearings | 166 |
| abstract_inverted_index.diagnose | 8 |
| abstract_inverted_index.features | 81 |
| abstract_inverted_index.improved | 61 |
| abstract_inverted_index.learning | 24, 112 |
| abstract_inverted_index.observed | 127 |
| abstract_inverted_index.proposed | 43 |
| abstract_inverted_index.recorded | 84 |
| abstract_inverted_index.research | 108 |
| abstract_inverted_index.suitable | 53 |
| abstract_inverted_index.Variation | 67 |
| abstract_inverted_index.accuracy. | 123 |
| abstract_inverted_index.analyzed. | 147 |
| abstract_inverted_index.analyzing | 63 |
| abstract_inverted_index.describes | 29 |
| abstract_inverted_index.diagnosis | 56, 159 |
| abstract_inverted_index.extracted | 82 |
| abstract_inverted_index.frequency | 40 |
| abstract_inverted_index.important | 155 |
| abstract_inverted_index.measured. | 79 |
| abstract_inverted_index.objective | 2 |
| abstract_inverted_index.validated | 109 |
| abstract_inverted_index.vibration | 16, 85 |
| abstract_inverted_index.algorithm, | 118 |
| abstract_inverted_index.algorithms | 103 |
| abstract_inverted_index.approaches | 31, 48, 113 |
| abstract_inverted_index.conditions | 96 |
| abstract_inverted_index.monitoring | 131 |
| abstract_inverted_index.processing | 20, 34, 51 |
| abstract_inverted_index.techniques | 21 |
| abstract_inverted_index.Statistical | 80 |
| abstract_inverted_index.algorithms. | 26 |
| abstract_inverted_index.effectively | 57 |
| abstract_inverted_index.techniques, | 35 |
| abstract_inverted_index.time-domain | 38, 88 |
| abstract_inverted_index.investigated | 45 |
| abstract_inverted_index.consideration | 156 |
| abstract_inverted_index.misalignment. | 169 |
| abstract_inverted_index.classification | 122 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.2105871 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |