Vigorous IDS on Nefarious Operations and Threat Analysis Using Ensemble Machine Learning Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.18280/ria.350604
The geometric increase in the usage of computer networking activities poses problems with the management of network normal operations. These issues had drawn the attention of network security researchers to introduce different kinds of intrusion detection systems (IDS) which monitor data flow in a network for unwanted and illicit operations. The violation of security policies with nefarious motive is what is known as intrusion. The IDS therefore examine traffic passing through networked systems checking for nefarious operations and threats, which then sends warnings if any of these malicious activities are detected. There are 2 types of detection of malicious activities, misuse detection, in this case the information about the passing network traffic is gathered, analyzed, which is then compared with the stored predefined signatures. The other type of detection is the Anomaly detection which is detecting all network activities that deviates from regular user operations. Several researchers have done various works on IDS in which they employed different machine learning (ML), evaluating their work on various datasets. In this paper, an efficient IDS is built using Ensemble machine learning algorithms which is evaluated on CIC-IDS2017, an updated dataset that contains most recent attacks. The results obtained show a great increase in the rate of detection, increase in accuracy as well as reduction in the false positive rates (FPR).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18280/ria.350604
- https://www.iieta.org/download/file/fid/65838
- OA Status
- bronze
- Cited By
- 1
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200622200
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200622200Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18280/ria.350604Digital Object Identifier
- Title
-
Vigorous IDS on Nefarious Operations and Threat Analysis Using Ensemble Machine LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-28Full publication date if available
- Authors
-
Usman Shuaibu Musa, Sudeshna Chakraborty, Hitesh Kumar Sharma, Tanupriya Choudhury, Chiranjit Dutta, Bhagwant SinghList of authors in order
- Landing page
-
https://doi.org/10.18280/ria.350604Publisher landing page
- PDF URL
-
https://www.iieta.org/download/file/fid/65838Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.iieta.org/download/file/fid/65838Direct OA link when available
- Concepts
-
Intrusion detection system, Computer science, Anomaly detection, Computer security, Network security, Intrusion, False positive rate, Traffic analysis, Network administrator, Machine learning, Artificial intelligence, Data mining, Geochemistry, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200622200 |
|---|---|
| doi | https://doi.org/10.18280/ria.350604 |
| ids.doi | https://doi.org/10.18280/ria.350604 |
| ids.openalex | https://openalex.org/W4200622200 |
| fwci | 0.16563176 |
| type | article |
| title | Vigorous IDS on Nefarious Operations and Threat Analysis Using Ensemble Machine Learning |
| biblio.issue | 6 |
| biblio.volume | 35 |
| biblio.last_page | 475 |
| biblio.first_page | 467 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11241 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9907000064849854 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Advanced Malware Detection Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C35525427 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7746822834014893 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[0].display_name | Intrusion detection system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7601015567779541 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6011022329330444 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C38652104 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5604932308197021 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[3].display_name | Computer security |
| concepts[4].id | https://openalex.org/C182590292 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5451809763908386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q989632 |
| concepts[4].display_name | Network security |
| concepts[5].id | https://openalex.org/C158251709 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4860894978046417 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q354025 |
| concepts[5].display_name | Intrusion |
| concepts[6].id | https://openalex.org/C95922358 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4452711045742035 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5432725 |
| concepts[6].display_name | False positive rate |
| concepts[7].id | https://openalex.org/C2781317605 |
| concepts[7].level | 2 |
| concepts[7].score | 0.42857831716537476 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7832483 |
| concepts[7].display_name | Traffic analysis |
| concepts[8].id | https://openalex.org/C2779173999 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42655742168426514 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q680296 |
| concepts[8].display_name | Network administrator |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41242292523384094 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3981536626815796 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.37920212745666504 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C17409809 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q161764 |
| concepts[12].display_name | Geochemistry |
| concepts[13].id | https://openalex.org/C127313418 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[13].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[0].score | 0.7746822834014893 |
| keywords[0].display_name | Intrusion detection system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7601015567779541 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.6011022329330444 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/computer-security |
| keywords[3].score | 0.5604932308197021 |
| keywords[3].display_name | Computer security |
| keywords[4].id | https://openalex.org/keywords/network-security |
| keywords[4].score | 0.5451809763908386 |
| keywords[4].display_name | Network security |
| keywords[5].id | https://openalex.org/keywords/intrusion |
| keywords[5].score | 0.4860894978046417 |
| keywords[5].display_name | Intrusion |
| keywords[6].id | https://openalex.org/keywords/false-positive-rate |
| keywords[6].score | 0.4452711045742035 |
| keywords[6].display_name | False positive rate |
| keywords[7].id | https://openalex.org/keywords/traffic-analysis |
| keywords[7].score | 0.42857831716537476 |
| keywords[7].display_name | Traffic analysis |
| keywords[8].id | https://openalex.org/keywords/network-administrator |
| keywords[8].score | 0.42655742168426514 |
| keywords[8].display_name | Network administrator |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.41242292523384094 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3981536626815796 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.37920212745666504 |
| keywords[11].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.18280/ria.350604 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205895 |
| locations[0].source.issn | 0992-499X, 1958-5748 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0992-499X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Revue d intelligence artificielle |
| locations[0].source.host_organization | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_name | International Information and Engineering Technology Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_lineage_names | International Information and Engineering Technology Association |
| locations[0].license | |
| locations[0].pdf_url | https://www.iieta.org/download/file/fid/65838 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Revue d'Intelligence Artificielle |
| locations[0].landing_page_url | https://doi.org/10.18280/ria.350604 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5013905444 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Usman Shuaibu Musa |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I74885063 |
| authorships[0].affiliations[0].raw_affiliation_string | Sharda University, Greater Noida, Uttar Pradesh 201306, India |
| authorships[0].institutions[0].id | https://openalex.org/I74885063 |
| authorships[0].institutions[0].ror | https://ror.org/03b6ffh07 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I74885063 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Sharda University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Usman Shuaibu Musa |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Sharda University, Greater Noida, Uttar Pradesh 201306, India |
| authorships[1].author.id | https://openalex.org/A5102824638 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sudeshna Chakraborty |
| authorships[1].affiliations[0].raw_affiliation_string | Lloyd Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sudeshna Chakraborty |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lloyd Institute of Engineering and Technology, Greater Noida, Uttar Pradesh 201306, India |
| authorships[2].author.id | https://openalex.org/A5002716826 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6816-0324 |
| authorships[2].author.display_name | Hitesh Kumar Sharma |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[2].affiliations[0].raw_affiliation_string | Cybernetics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| authorships[2].institutions[0].id | https://openalex.org/I5847235 |
| authorships[2].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hitesh Kumar Sharma |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Cybernetics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| authorships[3].author.id | https://openalex.org/A5021051196 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9826-2759 |
| authorships[3].author.display_name | Tanupriya Choudhury |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[3].affiliations[0].raw_affiliation_string | Informatics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| authorships[3].institutions[0].id | https://openalex.org/I5847235 |
| authorships[3].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tanupriya Choudhury |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Informatics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| authorships[4].author.id | https://openalex.org/A5066963914 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5836-8719 |
| authorships[4].author.display_name | Chiranjit Dutta |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145286018 |
| authorships[4].affiliations[0].raw_affiliation_string | SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh 201204, India |
| authorships[4].institutions[0].id | https://openalex.org/I145286018 |
| authorships[4].institutions[0].ror | https://ror.org/050113w36 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145286018 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | SRM Institute of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chiranjit Dutta |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | SRM Institute of Science and Technology, NCR Campus, Uttar Pradesh 201204, India |
| authorships[5].author.id | https://openalex.org/A5079103084 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3908-9762 |
| authorships[5].author.display_name | Bhagwant Singh |
| authorships[5].countries | IN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[5].affiliations[0].raw_affiliation_string | Informatics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| authorships[5].institutions[0].id | https://openalex.org/I5847235 |
| authorships[5].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[5].institutions[0].country_code | IN |
| authorships[5].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Bhagwant Singh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Informatics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iieta.org/download/file/fid/65838 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Vigorous IDS on Nefarious Operations and Threat Analysis Using Ensemble Machine Learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2997026285, https://openalex.org/W1567294858, https://openalex.org/W2361755837, https://openalex.org/W2566384264, https://openalex.org/W2537496145, https://openalex.org/W2765141658, https://openalex.org/W4248653431, https://openalex.org/W2066988624, https://openalex.org/W1989440310, https://openalex.org/W2146510646 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18280/ria.350604 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205895 |
| best_oa_location.source.issn | 0992-499X, 1958-5748 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0992-499X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Revue d intelligence artificielle |
| best_oa_location.source.host_organization | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_name | International Information and Engineering Technology Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.iieta.org/download/file/fid/65838 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Revue d'Intelligence Artificielle |
| best_oa_location.landing_page_url | https://doi.org/10.18280/ria.350604 |
| primary_location.id | doi:10.18280/ria.350604 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205895 |
| primary_location.source.issn | 0992-499X, 1958-5748 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0992-499X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Revue d intelligence artificielle |
| primary_location.source.host_organization | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_name | International Information and Engineering Technology Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| primary_location.license | |
| primary_location.pdf_url | https://www.iieta.org/download/file/fid/65838 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Revue d'Intelligence Artificielle |
| primary_location.landing_page_url | https://doi.org/10.18280/ria.350604 |
| publication_date | 2021-12-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2858044321, https://openalex.org/W2552493337, https://openalex.org/W3022329842, https://openalex.org/W1550585437, https://openalex.org/W2734779510, https://openalex.org/W1984438447, https://openalex.org/W2407950884, https://openalex.org/W2504979170, https://openalex.org/W3023771043, https://openalex.org/W2942788712, https://openalex.org/W2746495981, https://openalex.org/W2626250024, https://openalex.org/W2974065600, https://openalex.org/W2807534012, https://openalex.org/W2779585691, https://openalex.org/W2767806875, https://openalex.org/W2559447984, https://openalex.org/W2732383329, https://openalex.org/W2889079780, https://openalex.org/W4236794458, https://openalex.org/W2744338514, https://openalex.org/W2915197513, https://openalex.org/W2734728597, https://openalex.org/W3106741970, https://openalex.org/W836876797, https://openalex.org/W1977366836, https://openalex.org/W2783284780, https://openalex.org/W2984108472, https://openalex.org/W2794951181, https://openalex.org/W2527999453, https://openalex.org/W2898943231, https://openalex.org/W3016454271, https://openalex.org/W3028728764 |
| referenced_works_count | 33 |
| abstract_inverted_index.2 | 93 |
| abstract_inverted_index.a | 43, 197 |
| abstract_inverted_index.In | 167 |
| abstract_inverted_index.an | 170, 185 |
| abstract_inverted_index.as | 62, 208, 210 |
| abstract_inverted_index.if | 83 |
| abstract_inverted_index.in | 3, 42, 102, 153, 200, 206, 212 |
| abstract_inverted_index.is | 58, 60, 112, 116, 129, 134, 173, 181 |
| abstract_inverted_index.of | 6, 15, 25, 33, 52, 85, 95, 97, 127, 203 |
| abstract_inverted_index.on | 151, 164, 183 |
| abstract_inverted_index.to | 29 |
| abstract_inverted_index.IDS | 65, 152, 172 |
| abstract_inverted_index.The | 0, 50, 64, 124, 193 |
| abstract_inverted_index.all | 136 |
| abstract_inverted_index.and | 47, 77 |
| abstract_inverted_index.any | 84 |
| abstract_inverted_index.are | 89, 92 |
| abstract_inverted_index.for | 45, 74 |
| abstract_inverted_index.had | 21 |
| abstract_inverted_index.the | 4, 13, 23, 105, 108, 120, 130, 201, 213 |
| abstract_inverted_index.case | 104 |
| abstract_inverted_index.data | 40 |
| abstract_inverted_index.done | 148 |
| abstract_inverted_index.flow | 41 |
| abstract_inverted_index.from | 141 |
| abstract_inverted_index.have | 147 |
| abstract_inverted_index.most | 190 |
| abstract_inverted_index.rate | 202 |
| abstract_inverted_index.show | 196 |
| abstract_inverted_index.that | 139, 188 |
| abstract_inverted_index.then | 80, 117 |
| abstract_inverted_index.they | 155 |
| abstract_inverted_index.this | 103, 168 |
| abstract_inverted_index.type | 126 |
| abstract_inverted_index.user | 143 |
| abstract_inverted_index.well | 209 |
| abstract_inverted_index.what | 59 |
| abstract_inverted_index.with | 12, 55, 119 |
| abstract_inverted_index.work | 163 |
| abstract_inverted_index.(IDS) | 37 |
| abstract_inverted_index.(ML), | 160 |
| abstract_inverted_index.There | 91 |
| abstract_inverted_index.These | 19 |
| abstract_inverted_index.about | 107 |
| abstract_inverted_index.built | 174 |
| abstract_inverted_index.drawn | 22 |
| abstract_inverted_index.false | 214 |
| abstract_inverted_index.great | 198 |
| abstract_inverted_index.kinds | 32 |
| abstract_inverted_index.known | 61 |
| abstract_inverted_index.other | 125 |
| abstract_inverted_index.poses | 10 |
| abstract_inverted_index.rates | 216 |
| abstract_inverted_index.sends | 81 |
| abstract_inverted_index.their | 162 |
| abstract_inverted_index.these | 86 |
| abstract_inverted_index.types | 94 |
| abstract_inverted_index.usage | 5 |
| abstract_inverted_index.using | 175 |
| abstract_inverted_index.which | 38, 79, 115, 133, 154, 180 |
| abstract_inverted_index.works | 150 |
| abstract_inverted_index.(FPR). | 217 |
| abstract_inverted_index.issues | 20 |
| abstract_inverted_index.misuse | 100 |
| abstract_inverted_index.motive | 57 |
| abstract_inverted_index.normal | 17 |
| abstract_inverted_index.paper, | 169 |
| abstract_inverted_index.recent | 191 |
| abstract_inverted_index.stored | 121 |
| abstract_inverted_index.Anomaly | 131 |
| abstract_inverted_index.Several | 145 |
| abstract_inverted_index.dataset | 187 |
| abstract_inverted_index.examine | 67 |
| abstract_inverted_index.illicit | 48 |
| abstract_inverted_index.machine | 158, 177 |
| abstract_inverted_index.monitor | 39 |
| abstract_inverted_index.network | 16, 26, 44, 110, 137 |
| abstract_inverted_index.passing | 69, 109 |
| abstract_inverted_index.regular | 142 |
| abstract_inverted_index.results | 194 |
| abstract_inverted_index.systems | 36, 72 |
| abstract_inverted_index.through | 70 |
| abstract_inverted_index.traffic | 68, 111 |
| abstract_inverted_index.updated | 186 |
| abstract_inverted_index.various | 149, 165 |
| abstract_inverted_index.Ensemble | 176 |
| abstract_inverted_index.accuracy | 207 |
| abstract_inverted_index.attacks. | 192 |
| abstract_inverted_index.checking | 73 |
| abstract_inverted_index.compared | 118 |
| abstract_inverted_index.computer | 7 |
| abstract_inverted_index.contains | 189 |
| abstract_inverted_index.deviates | 140 |
| abstract_inverted_index.employed | 156 |
| abstract_inverted_index.increase | 2, 199, 205 |
| abstract_inverted_index.learning | 159, 178 |
| abstract_inverted_index.obtained | 195 |
| abstract_inverted_index.policies | 54 |
| abstract_inverted_index.positive | 215 |
| abstract_inverted_index.problems | 11 |
| abstract_inverted_index.security | 27, 53 |
| abstract_inverted_index.threats, | 78 |
| abstract_inverted_index.unwanted | 46 |
| abstract_inverted_index.warnings | 82 |
| abstract_inverted_index.analyzed, | 114 |
| abstract_inverted_index.attention | 24 |
| abstract_inverted_index.datasets. | 166 |
| abstract_inverted_index.detected. | 90 |
| abstract_inverted_index.detecting | 135 |
| abstract_inverted_index.detection | 35, 96, 128, 132 |
| abstract_inverted_index.different | 31, 157 |
| abstract_inverted_index.efficient | 171 |
| abstract_inverted_index.evaluated | 182 |
| abstract_inverted_index.gathered, | 113 |
| abstract_inverted_index.geometric | 1 |
| abstract_inverted_index.introduce | 30 |
| abstract_inverted_index.intrusion | 34 |
| abstract_inverted_index.malicious | 87, 98 |
| abstract_inverted_index.nefarious | 56, 75 |
| abstract_inverted_index.networked | 71 |
| abstract_inverted_index.reduction | 211 |
| abstract_inverted_index.therefore | 66 |
| abstract_inverted_index.violation | 51 |
| abstract_inverted_index.activities | 9, 88, 138 |
| abstract_inverted_index.algorithms | 179 |
| abstract_inverted_index.detection, | 101, 204 |
| abstract_inverted_index.evaluating | 161 |
| abstract_inverted_index.intrusion. | 63 |
| abstract_inverted_index.management | 14 |
| abstract_inverted_index.networking | 8 |
| abstract_inverted_index.operations | 76 |
| abstract_inverted_index.predefined | 122 |
| abstract_inverted_index.activities, | 99 |
| abstract_inverted_index.information | 106 |
| abstract_inverted_index.operations. | 18, 49, 144 |
| abstract_inverted_index.researchers | 28, 146 |
| abstract_inverted_index.signatures. | 123 |
| abstract_inverted_index.CIC-IDS2017, | 184 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5021051196 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I5847235 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.7599999904632568 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.54484025 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |