ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1908.02265
We present ViLBERT (short for Vision-and-Language BERT), a model for learning task-agnostic joint representations of image content and natural language. We extend the popular BERT architecture to a multi-modal two-stream model, pro-cessing both visual and textual inputs in separate streams that interact through co-attentional transformer layers. We pretrain our model through two proxy tasks on the large, automatically collected Conceptual Captions dataset and then transfer it to multiple established vision-and-language tasks -- visual question answering, visual commonsense reasoning, referring expressions, and caption-based image retrieval -- by making only minor additions to the base architecture. We observe significant improvements across tasks compared to existing task-specific models -- achieving state-of-the-art on all four tasks. Our work represents a shift away from learning groundings between vision and language only as part of task training and towards treating visual grounding as a pretrainable and transferable capability.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1908.02265
- https://arxiv.org/pdf/1908.02265
- OA Status
- green
- Cited By
- 1672
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2966715458
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2966715458Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1908.02265Digital Object Identifier
- Title
-
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language TasksWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-08-06Full publication date if available
- Authors
-
Jiasen Lu, Dhruv Batra, Devi Parikh, Stefan LeeList of authors in order
- Landing page
-
https://arxiv.org/abs/1908.02265Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1908.02265Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1908.02265Direct OA link when available
- Concepts
-
Computer science, Commonsense reasoning, Natural language processing, Artificial intelligence, Question answering, Task (project management), Transformer, Natural language, Architecture, Multi-task learning, Language understanding, Natural language understanding, Visual reasoning, Language model, Human–computer interaction, Visual arts, Art, Economics, Quantum mechanics, Voltage, Physics, ManagementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1672Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 150, 2024: 279, 2023: 496, 2022: 392, 2021: 264Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2966715458 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1908.02265 |
| ids.doi | https://doi.org/10.48550/arxiv.1908.02265 |
| ids.mag | 2966715458 |
| ids.openalex | https://openalex.org/W2966715458 |
| fwci | |
| type | preprint |
| title | ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9955999851226807 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10627 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9847000241279602 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Image and Video Retrieval Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8107885122299194 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C193221554 |
| concepts[1].level | 2 |
| concepts[1].score | 0.690273106098175 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5153664 |
| concepts[1].display_name | Commonsense reasoning |
| concepts[2].id | https://openalex.org/C204321447 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6208510398864746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[2].display_name | Natural language processing |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5618556141853333 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C44291984 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5526125431060791 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1074173 |
| concepts[4].display_name | Question answering |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5341948866844177 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C66322947 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5284464359283447 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[6].display_name | Transformer |
| concepts[7].id | https://openalex.org/C195324797 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4826265275478363 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q33742 |
| concepts[7].display_name | Natural language |
| concepts[8].id | https://openalex.org/C123657996 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4582878649234772 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12271 |
| concepts[8].display_name | Architecture |
| concepts[9].id | https://openalex.org/C28006648 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4574020504951477 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[9].display_name | Multi-task learning |
| concepts[10].id | https://openalex.org/C2983448237 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45251891016960144 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[10].display_name | Language understanding |
| concepts[11].id | https://openalex.org/C2779439875 |
| concepts[11].level | 3 |
| concepts[11].score | 0.43654322624206543 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1078276 |
| concepts[11].display_name | Natural language understanding |
| concepts[12].id | https://openalex.org/C2777508537 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42785608768463135 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7936620 |
| concepts[12].display_name | Visual reasoning |
| concepts[13].id | https://openalex.org/C137293760 |
| concepts[13].level | 2 |
| concepts[13].score | 0.42752042412757874 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[13].display_name | Language model |
| concepts[14].id | https://openalex.org/C107457646 |
| concepts[14].level | 1 |
| concepts[14].score | 0.32127615809440613 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q207434 |
| concepts[14].display_name | Human–computer interaction |
| concepts[15].id | https://openalex.org/C153349607 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[15].display_name | Visual arts |
| concepts[16].id | https://openalex.org/C142362112 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[16].display_name | Art |
| concepts[17].id | https://openalex.org/C162324750 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[17].display_name | Economics |
| concepts[18].id | https://openalex.org/C62520636 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[18].display_name | Quantum mechanics |
| concepts[19].id | https://openalex.org/C165801399 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[19].display_name | Voltage |
| concepts[20].id | https://openalex.org/C121332964 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[20].display_name | Physics |
| concepts[21].id | https://openalex.org/C187736073 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[21].display_name | Management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8107885122299194 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/commonsense-reasoning |
| keywords[1].score | 0.690273106098175 |
| keywords[1].display_name | Commonsense reasoning |
| keywords[2].id | https://openalex.org/keywords/natural-language-processing |
| keywords[2].score | 0.6208510398864746 |
| keywords[2].display_name | Natural language processing |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5618556141853333 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/question-answering |
| keywords[4].score | 0.5526125431060791 |
| keywords[4].display_name | Question answering |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.5341948866844177 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/transformer |
| keywords[6].score | 0.5284464359283447 |
| keywords[6].display_name | Transformer |
| keywords[7].id | https://openalex.org/keywords/natural-language |
| keywords[7].score | 0.4826265275478363 |
| keywords[7].display_name | Natural language |
| keywords[8].id | https://openalex.org/keywords/architecture |
| keywords[8].score | 0.4582878649234772 |
| keywords[8].display_name | Architecture |
| keywords[9].id | https://openalex.org/keywords/multi-task-learning |
| keywords[9].score | 0.4574020504951477 |
| keywords[9].display_name | Multi-task learning |
| keywords[10].id | https://openalex.org/keywords/language-understanding |
| keywords[10].score | 0.45251891016960144 |
| keywords[10].display_name | Language understanding |
| keywords[11].id | https://openalex.org/keywords/natural-language-understanding |
| keywords[11].score | 0.43654322624206543 |
| keywords[11].display_name | Natural language understanding |
| keywords[12].id | https://openalex.org/keywords/visual-reasoning |
| keywords[12].score | 0.42785608768463135 |
| keywords[12].display_name | Visual reasoning |
| keywords[13].id | https://openalex.org/keywords/language-model |
| keywords[13].score | 0.42752042412757874 |
| keywords[13].display_name | Language model |
| keywords[14].id | https://openalex.org/keywords/human–computer-interaction |
| keywords[14].score | 0.32127615809440613 |
| keywords[14].display_name | Human–computer interaction |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1908.02265 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1908.02265 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1908.02265 |
| locations[1].id | doi:10.48550/arxiv.1908.02265 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.1908.02265 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101055775 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jiasen Lu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiasen Lu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014035752 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Dhruv Batra |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Dhruv Batra |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5050342343 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Devi Parikh |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Devi Parikh |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5051259505 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5953-1963 |
| authorships[3].author.display_name | Stefan Lee |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Stefan Lee |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1908.02265 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2019-08-13T00:00:00 |
| display_name | ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4389518870, https://openalex.org/W2928107702, https://openalex.org/W4388093383, https://openalex.org/W2621232079, https://openalex.org/W4293519385, https://openalex.org/W3175270222, https://openalex.org/W3180295840, https://openalex.org/W3189094972, https://openalex.org/W4296269439, https://openalex.org/W3187064440 |
| cited_by_count | 1672 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 150 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 279 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 496 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 392 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 264 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 88 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:1908.02265 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1908.02265 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1908.02265 |
| primary_location.id | pmh:oai:arXiv.org:1908.02265 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1908.02265 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1908.02265 |
| publication_date | 2019-08-06 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2784458614, https://openalex.org/W2626778328, https://openalex.org/W2774005037, https://openalex.org/W3104279398, https://openalex.org/W2611669587, https://openalex.org/W2886641317, https://openalex.org/W2198618282, https://openalex.org/W2599765304, https://openalex.org/W2963800628, https://openalex.org/W2913129712, https://openalex.org/W2745461083, https://openalex.org/W2963245493, https://openalex.org/W2117539524, https://openalex.org/W2185175083, https://openalex.org/W2768661419, https://openalex.org/W343636949, https://openalex.org/W2251512949, https://openalex.org/W2953106684, https://openalex.org/W2798802295, https://openalex.org/W2963341956, https://openalex.org/W2903867219, https://openalex.org/W2144796873, https://openalex.org/W2949891561, https://openalex.org/W2787560479, https://openalex.org/W2525778437, https://openalex.org/W2931316642, https://openalex.org/W2575671312, https://openalex.org/W2194775991, https://openalex.org/W2914120296, https://openalex.org/W1957780744 |
| referenced_works_count | 30 |
| abstract_inverted_index.a | 7, 27, 115, 137 |
| abstract_inverted_index.-- | 71, 84, 105 |
| abstract_inverted_index.We | 0, 20, 46, 94 |
| abstract_inverted_index.as | 126, 136 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 37 |
| abstract_inverted_index.it | 65 |
| abstract_inverted_index.of | 14, 128 |
| abstract_inverted_index.on | 54, 108 |
| abstract_inverted_index.to | 26, 66, 90, 101 |
| abstract_inverted_index.Our | 112 |
| abstract_inverted_index.all | 109 |
| abstract_inverted_index.and | 17, 34, 62, 80, 123, 131, 139 |
| abstract_inverted_index.for | 4, 9 |
| abstract_inverted_index.our | 48 |
| abstract_inverted_index.the | 22, 55, 91 |
| abstract_inverted_index.two | 51 |
| abstract_inverted_index.BERT | 24 |
| abstract_inverted_index.away | 117 |
| abstract_inverted_index.base | 92 |
| abstract_inverted_index.both | 32 |
| abstract_inverted_index.four | 110 |
| abstract_inverted_index.from | 118 |
| abstract_inverted_index.only | 87, 125 |
| abstract_inverted_index.part | 127 |
| abstract_inverted_index.task | 129 |
| abstract_inverted_index.that | 40 |
| abstract_inverted_index.then | 63 |
| abstract_inverted_index.work | 113 |
| abstract_inverted_index.image | 15, 82 |
| abstract_inverted_index.joint | 12 |
| abstract_inverted_index.minor | 88 |
| abstract_inverted_index.model | 8, 49 |
| abstract_inverted_index.proxy | 52 |
| abstract_inverted_index.shift | 116 |
| abstract_inverted_index.tasks | 53, 70, 99 |
| abstract_inverted_index.(short | 3 |
| abstract_inverted_index.BERT), | 6 |
| abstract_inverted_index.across | 98 |
| abstract_inverted_index.extend | 21 |
| abstract_inverted_index.inputs | 36 |
| abstract_inverted_index.large, | 56 |
| abstract_inverted_index.making | 86 |
| abstract_inverted_index.model, | 30 |
| abstract_inverted_index.models | 104 |
| abstract_inverted_index.tasks. | 111 |
| abstract_inverted_index.vision | 122 |
| abstract_inverted_index.visual | 33, 72, 75, 134 |
| abstract_inverted_index.ViLBERT | 2 |
| abstract_inverted_index.between | 121 |
| abstract_inverted_index.content | 16 |
| abstract_inverted_index.dataset | 61 |
| abstract_inverted_index.layers. | 45 |
| abstract_inverted_index.natural | 18 |
| abstract_inverted_index.observe | 95 |
| abstract_inverted_index.popular | 23 |
| abstract_inverted_index.present | 1 |
| abstract_inverted_index.streams | 39 |
| abstract_inverted_index.textual | 35 |
| abstract_inverted_index.through | 42, 50 |
| abstract_inverted_index.towards | 132 |
| abstract_inverted_index.Captions | 60 |
| abstract_inverted_index.compared | 100 |
| abstract_inverted_index.existing | 102 |
| abstract_inverted_index.interact | 41 |
| abstract_inverted_index.language | 124 |
| abstract_inverted_index.learning | 10, 119 |
| abstract_inverted_index.multiple | 67 |
| abstract_inverted_index.pretrain | 47 |
| abstract_inverted_index.question | 73 |
| abstract_inverted_index.separate | 38 |
| abstract_inverted_index.training | 130 |
| abstract_inverted_index.transfer | 64 |
| abstract_inverted_index.treating | 133 |
| abstract_inverted_index.achieving | 106 |
| abstract_inverted_index.additions | 89 |
| abstract_inverted_index.collected | 58 |
| abstract_inverted_index.grounding | 135 |
| abstract_inverted_index.language. | 19 |
| abstract_inverted_index.referring | 78 |
| abstract_inverted_index.retrieval | 83 |
| abstract_inverted_index.Conceptual | 59 |
| abstract_inverted_index.answering, | 74 |
| abstract_inverted_index.groundings | 120 |
| abstract_inverted_index.reasoning, | 77 |
| abstract_inverted_index.represents | 114 |
| abstract_inverted_index.two-stream | 29 |
| abstract_inverted_index.capability. | 141 |
| abstract_inverted_index.commonsense | 76 |
| abstract_inverted_index.established | 68 |
| abstract_inverted_index.multi-modal | 28 |
| abstract_inverted_index.pro-cessing | 31 |
| abstract_inverted_index.significant | 96 |
| abstract_inverted_index.transformer | 44 |
| abstract_inverted_index.architecture | 25 |
| abstract_inverted_index.expressions, | 79 |
| abstract_inverted_index.improvements | 97 |
| abstract_inverted_index.pretrainable | 138 |
| abstract_inverted_index.transferable | 140 |
| abstract_inverted_index.architecture. | 93 |
| abstract_inverted_index.automatically | 57 |
| abstract_inverted_index.caption-based | 81 |
| abstract_inverted_index.task-agnostic | 11 |
| abstract_inverted_index.task-specific | 103 |
| abstract_inverted_index.co-attentional | 43 |
| abstract_inverted_index.representations | 13 |
| abstract_inverted_index.state-of-the-art | 107 |
| abstract_inverted_index.Vision-and-Language | 5 |
| abstract_inverted_index.vision-and-language | 69 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |